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Abstract

This dissertation presents kinematically deforming skinned mesh (KDSM), a novel

data structure that serves as a foundation to implement hair-water simulation sys-

tem for hair animation, robust volume-conserving water simulation, and hair-water

interaction.

Both hair and water simulation techniques have become very popular in the en-

tertainment industry, especially in motion pictures; however, these techniques suffer

from limited scalability, difficult artist control, and a lack of a flexible framework that

incorporates multiple methods. Researchers have adopted approximative approaches

for hair simulation, such as volumetric hair and guide hair, which are more efficient

and easier to control than simulating each individual hair, but the benefits of these

are situational and limited, and the results are often of lower quality. For water simu-

lation, spatially adaptive methods such as Adaptive Mesh Refinement (AMR), octree

data structures, lattice based tetrahedral methods, and Chimera grids are used for

efficiency, but these lack robustness, are difficult to implement/control, and become

less efficient in many scenarios. In order to address these problems, we developed

KDSM, a skinned tetrahedral mesh, which contains air volume around the character,

includes inertial effects and deformations of the character animation, and maintains

a consistent topology. Based on such features of the KDSM, we present a hair-water

framework that efficiently computes hair, water, and hair-water phenomena while of-

fering a powerful control for artists and providing a flexible framework to integrate

multiple methods with ease.

After the introductory chapter, we discuss our novel hair animation technique and

hair-water interaction scheme. We provide the following layering framework which is
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well suited for an iterative feedback loop of a creative process, offering a straightfor-

ward and powerful artist control by separating bulk hair motion and intricate hair

motion. For an input character animation, we initialize a tetrahedral mesh, KDSM,

in a sculpt/normalized/T-pose and generate a corresponding animation sequence of

KDSMs via morph that handles any given constitutive model, e.g., mass spring. With

the animated KDSM sequence, we apply kinematic skinning by embedding hair parti-

cles to follow the KDSMs to achieve bulk hair motion, and additionally apply dynamic

skinning by applying more deformation on the copied KDSMs when external forces,

such as wind and water drag, are needed. Then, if intricate hair motion is required, we

use either blendshape hair for precomputed intricate hair motion within the KDSM

or individual hair simulation for dynamic motion can be run with any individual hair

model (adaptively if desired). This chapter ends with a discussion of how we run our

novel hair-water solver with a hair porosity scheme to handle hair-water interactions

in the Eulerian grid.

In the next chapter, we present a robust volume-conserving character-water in-

teraction. A coarse Cartesian Eulerian grid is used to capture bulk water motion,

and our novel volume-conserving volume-of-fluid method in arbitrary Lagrangian-

Eulerian mesh derived from the KDSM is used to achieve intricate water motion

with high adaptivity and volume preservation around the character. We precompute

various auxiliary information such as adaptivity via subdivision, topological informa-

tion, and porosity to improve the simulation time as well as the robustness. Also

discussed is a fast, robust, and simple partitioned approach to two-way couple our

two distinct fluid solvers specializing in their own domain of interest. This approach

allows us to highly specialize our volume-of-fluid solver so that we can control fluid

motion more easily, such as adhesion effects and anisotropic porosity for hair whereas

the background fluid solver focuses on handling bulk water surfaces using level sets.

Furthermore, this chapter presents our novel water surface reconstruction, taking ad-

vantage of advection step of the particle level set method to merge output of our

two distinct water solvers in a time-coherent manner. Finally, we demonstrate hair-

water interaction in a setting similar to that discussed in the previous chapter with

improved visual quality through our novel water framework.
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Chapter 1

Introduction

In the entertainment industry, hair and water effects are predominant features needed

to express an artistic vision. While both technologies have developed tremendously

over the last decade, their uses are still limited to high-budget projects, such as motion

pictures and AAA games, and they require skilled specialists to spend a vast amount

of time and resources to achieve the desired effect.

Thus, hair and water effects are hot topics in computer graphics, and much

progress has been made to improve the aforementioned issues. Many researchers have

approached hair simulation in a volumetric fashion to approximate hairs [46, 10, 75],

and more specialized guide-hair variants [76, 24, 96] to improve efficiency along with

a better artist control. However, because the volumetric approach is approximative,

the results are often physically implausible, offer only limited control, and suffer from

numerous approximation artifacts. Alternatively, [81] simulated each individual hair

strand to obtain impressive results, but at the cost of time and computation power,

which makes this approach feasible only in a heavyweight cluster environment without

much artist control.

Water simulation has many variants with similar objectives, and many researchers

focused on achieving spatial adaptivity to improve the simulation time as in Adaptive

Mesh Refinement (AMR) [89], octree data structures [61], [60], [1], lattice based tetra-

hedral methods [25], [11], [8], and Chimera grids [33], [34], but there are many known

problems, such as instability and frequency of remeshing, high communication costs,
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2 CHAPTER 1. INTRODUCTION

and domain decomposition issues because of a large number of small patches. Addi-

tionally, researchers have implemented various hybrid methods such as the particle

level set (PLS) method [35], [36], including spray particles [62] in order to integrate

particle and grid representations, maximizing the benefits that can be gained from

each method based on the technical insight that we can use different models for differ-

ent scales. Even though both hair and water simulations improved significantly since

their inception from the previous work, many challenges remain that prevent hair and

water simulation technologies from being adopted more widely in the industry.

The work presented in this dissertation addresses these challenges with a novel

data structure, kinematically deforming skinned mesh (KDSM). The KDSM can de-

form along with the solid surface while maintaining a consistent topology for the

surrounding air volume instead of the grid which is fixed in space or particles which

do not have any connectivity. Specifically, we have developed a novel hair-water in-

teraction framework that improves scalability, offers a powerful artist control, and

provides a flexible framework capable of integrating multiple methods as follows:

Scalability: The KDSM, initialized as a coarse mesh, improves the scalability

of hair and water simulation by (1) supporting precomputation of numerous auxil-

iary information (e.g. blendshape hair weights, adaptivity, topological information,

adhesion coefficients, and porosity), (2) allowing the framework to be layered with

bulk motion and intricate motion in a separate manner to use specialized solvers for

each scale, and (3) providing a kinematic support for the simulated meshes that are

anchored to use weak springs.

Artist Control: The KDSM improves artist control by (1) providing a visual

guide for artists, (2) applying the desired amount of KDSM deformation to the sim-

ulated meshes, (3) containing air volume for hair particles to move freely instead of

being constrained to lower-dimensional elements, and (4) achieving both adaptivity

and detailed boundary conditions for the water simulation.

Flexibility: The hair-water framework supports the layering and the partitioned

coupling based on the KDSM because of its agnostic nature towards simulation, which

does not dictate any particular approach to simulation, making our framework very

flexible.
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The framework consists of two novel components: a hair animation-focused com-

ponent and a robust volume-conserving water component. In addition, a hair-water

solver is implemented for both cases.

In the following chapter, we focus on hair animation and hair-water interaction

using KDSM. The separation of bulk hair motion and intricate hair motion allows us

to develop a novel layering framework for a straightforward and powerful feedback

loop for artists to iterate with the hair pipeline instead of having to rerun the entire

simulation from scratch per iteration. For a given character animation input, we cre-

ate a KDSM per frame via morph, which is flexible enough to handle any constitutive

model for tetrahedral mesh (we used mass spring and zero length spring model, but

finite element method or position based dynamics is also viable option). If the bulk

hair motion is desired, we use kinematic skinning by embedding hair particles into

the KDSM, and dynamic skinning is added by duplicating the KDSM with the cor-

responding constitutive model and allowing it to deform with external forces, such as

wind and water drag, while being attached to the original KDSM with zero length

springs. For the intricate hair motion, we use blendshape hair to animate detailed

hair motion precomputed within the KDSM by allowing hair particles’ hardbound

locations to drift in order to handle clumped, sagged and matted hairstyles, whereas

simulation of each individual hair (one can choose any individual hair simulation

method) with zero length spring anchoring such hairs to the KDSM is used when

dynamic hair simulation of individual hair strands is required, e.g., in collision. We

demonstrate our hair-water solver using porosity for hair and the PLS method.

In the next chapter, we illustrate a robust volume-conserving water simulation

framework for character-water interaction. We implemented a novel volume-conserving

volume-of-fluid (VOF) method in an arbitrary Lagrangian-Eulerian (ALE) mesh de-

rived from the KDSM, coupled with a coarse background Cartesian Eulerian grid

employing the PLS method. We prebake our ALE mesh prior to actual simulation

and precompute numerous auxiliary data, such as adaptivity through subdivision,

topological information, and porosity, based on the fact that the KDSM is computed

from kinematically deforming character. We achieve high spatial adaptivity around
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the character from our densely subdivided ALE mesh from the KDSM capturing in-

tricate water motion, while the background grid is coarse by design for bulk water

behavior. Our approach is fast, robust, and streamlined due to our simple partitioned

approach to two-way couple our two distinct fluid solvers. Our VOF method preserves

volume, which allows us to robustly implement adhesion and anisotropic porosity for

hair to control water effects as well as to implement hair-water interaction. Last, we

post-process the simulated water surface with our novel water surface reconstruction

scheme, using an advection-only modification of PLS simulation in a refined grid with

merged data from both Eulerian grid and ALE mesh to retain temporal coherency

with the fewer bumpy artifacts that are present in smoothing kernel methods.



Chapter 2

Hair Animation and Hair-Water

Interaction

In this chapter, we propose a novel framework for hair animation as well as hair-water

interaction that supports millions of hairs. First, we develop a hair animation frame-

work that embeds hair into a tetrahedralized volume mesh that we kinematically skin

to deform and follow the exterior of an animated character. Allowing the hairs to

follow their precomputed embedded locations in the kinematically deforming skinned

mesh already provides visually plausible behavior. Creating a copy of the tetrahedral

mesh, endowing it with springs, and attaching it to the kinematically skinned mesh

creates more dynamic behavior. Notably, the springs can be quite weak and thus

efficient to simulate because they are structurally supported by the kinematic mesh.

If independent simulation of individual hairs or guide hairs is desired, they too ben-

efit from being anchored to the kinematic mesh dramatically increasing efficiency as

weak springs can be used while still supporting interesting and dramatic hairstyles.

Furthermore, we explain how to embed these dynamic simulations into the kinemat-

ically deforming skinned mesh so that they can be used as part of a blendshape

system where an artist can make many subsequent iterations without requiring any

additional simulation. Although there are many applications for our newly proposed

approach to hair animation, we mostly focus on the particularly challenging problem

of hair-water interaction. While doing this, we discuss how porosities are stored in

5
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the kinematic mesh, how the kinematically deforming mesh can be used to apply drag

and adhesion forces to the water, etc.

2.1 Introduction

The seminal rendering of the teddy bear in [52] immediately piqued a great deal of

interest in hair animation and simulation, see [78, 9]. Since then hair simulation has

progressed a great deal and has been used as a signature effect in order to create many

iconic characters such as Sulley in Monsters, Inc., the Incredibles [75], Rapunzel in

Tangled [97, 84], Merida in Brave [49], Elsa in Frozen [100, 85], Puss in Boots, many

of the endearing creatures in Zootopia, and most recently Moana.

We provide a novel framework which supports millions of hairs as well as hair-

water interaction with layering and flexibility so that one can easily control the hair

in a straightforward manner as well as implement it based on their method of choice

rather than requiring our approach to be used for all pieces of the framework. Our

key observation is that once a character animation is finalized, one can utilize a

volumetric approach to hair in order to skin the volumetric region of air that will

subsequently contain the hair, approximating the bulk hair motion. This skinned

air provides dramatically better three-dimensional volumetric structure and support

for subsequent hair simulation than that provided by a lower-dimensional (i.e. 2D)

surface skin of the character. For a still character the mesh would be static and rigid,

but for an animated character the kinematically deforming mesh would be skinned

to include both inertial effects and deformations resulting from those inertial effects

(even swinging motions). Moreover, the kinematically deforming mesh can be made to

include effects due to deformations in the shape of the character, volume preservation,

collisions and self-collisions, folding and pinching, etc. Since the bulk effects of the

air region around the character are mostly induced by the pre-prescribed character

animation, it makes little sense to simulate this region over and over while trying to

obtain the desired subtle, creative, and/or stylistic behavior of the hair within this

volume. Instead, hair which is bound to follow our kinematically deforming mesh

automatically includes all the aforementioned volumetric effects without the need
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Figure 2.1: Given a skinned animation (top left), we skin a tetrahedral mesh to follow
that animation while including the effects of inertia, deformation, pinching, etc. (top
right). Subsequently, hair embedded in the tetrahedral mesh moves and deforms to
follow that mesh with the potential for additional simulation (bottom left). The
kinematically deforming tetrahedral mesh facilitates the use of a blendshape system
allowing one to specify hairstyles procedurally as hair is exposed to water (bottom
right). Final result, 540k hairs rendered (far right).

for any simulation at all, and any subsequent simulation would only be required for

computing deviation from this kinematically skinned guide mesh.

There are many circumstances where hair bound to the kinematic mesh is already

visually pleasing since the aforementioned volumetric effects are already included.

Moreover, when subsequent simulation is desired, the kinematic mesh provides for

dramatic gains in efficiency. For example, one can still simulate a dynamic tetra-

hedral mesh, but this dynamically simulated mesh would then be attached to the

kinematically deforming skinned mesh with zero-length springs providing structure

and support so that only very weak springs would be required internal to the dy-

namic tetrahedral mesh. Similarly, individual hairs can be anchored barycentrically

to the kinematically deforming skinned mesh so that they inherently retain much of

their shape and structure while using only a relatively weak, and thus efficient to

simulate, mass-spring system internally. In addition to the benefits our kinematically

deforming skinned mesh provides for the kinematic animation and dynamic simula-

tion of hair, it also provides a convenient, time-coherent parameterization of the free

space around the character which readily lends itself to the implementation of an

extremely efficient blendshape hair system enabling high-level artistic and directive
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Figure 2.2: Our framework prescribes a workflow that is flexible with respect to its
underyling constitutive model. In this diagram, orange components are computa-
tionally intensive stages of our pipeline and yellow components require iterations of
artistic control. Starred components are optional depending on the effects desired for
the animation.

control by the animator. This is especially useful in handling intricate hair motion

such as wetting and clumping of hairs. Finally, noting that [79] demonstrated the

benefits of using an Eulerian grid for hair-water interaction, we demonstrate some of

the benefits that our kinematically deforming skinned mesh (KDSM) also provides

for hair-water interaction, albeit in an arbitrary Lagrangian-Eulerian (ALE) rather

than Eulerian framework.

The first contribution of this paper is a layering of the framework, which provides

a straightforward and powerful artist control. The layering provides a separation of

the treatments of bulk hair motion and intricate hair motion, and it allows an artist

to have a highly efficient iterative feedback loop while maintaining stunning visual

quality. The KDSM and blendshape hair systems enable this because we allow hard-

bound locations to drift instead of being constant throughout the animation. Our

second contribution is a unified and flexible framework that can handle both volu-

metric and individual simulation of hairs, and use readily available physical models

along with the existing character animation to simulate hairs. The third contribution

of our method is an interface between kinematic hair and simulated hair via a novel

shape-preserving structure that supports the original shape of the hair. The fourth

contribution of the KDSM is that it supports hair-water interactions and facilitates

effects such as adhesion and drag on water. An overview of our method is given in

Figure 2.2.



2.2. PREVIOUS WORK 9

Figure 2.3: (Top) We create a kinematically deforming skinned mesh (KDSM) that
follows the animation and includes the effects of inertia, deformation, swinging mo-
tions, etc. (Bottom) Subsequently, any reference frame hairstyle can be skinned
throughout the animation by simply following its embedding in the KDSM via
barycentric coordinates.

2.2 Previous Work

Hair simulation is a hot topic in computer graphics, and various authors have ap-

proached hair simulation by explicitly assuming that hair acts as a volume, see e.g.

[46, 10, 75]. Methods that use guide hairs, see e.g. [76, 24, 96, 27], also assume that

they are simulating hair as a volume, using this assumption to create interaction rules

for simulated guide hairs and to interpolate renderable hairs from guide hairs. That

is, guide hairs are just the degrees of freedom chosen to represent the hair volume,

something exploited by [23] to obtain impressive results. [22] builds on this approach

using an adaptive simulation scheme to handle hair-solid collisions. Alternatively,

some authors aim to simulate every hair, see e.g. [81, 63, 31, 49, 12], in which case

it becomes important to consider physical interactions between actual hairs (see e.g.

[53]) as opposed to interactions based on volumetric continuum assumptions for guide

hairs.

Motivated by [83, 71, 101], we use a volumetric tetrahedral mesh in the air region

in order to treat both collisions and hair-hair interactions. However, our approach is

more similar to [91, 92], where the hair was embedded in a simulated volumetric lat-

tice enclosing the head. [15] pointed out that hair simulated in this fashion too closely

follows the continuum and subsequently proposed a two-layered approach similar to

[54] and [70]. We instead address this by utilizing a hybrid solids simulation frame-

work [82] with soft bindings that allow our hairs to drift away from their embedded



10 CHAPTER 2. HAIR ANIMATION AND HAIR-WATER INTERACTION

Figure 2.4: Treating hair volumetrically, a simulated dynamic tetrahedral mesh is
attached to the KDSM for structure and support, and sways back and forth under-
water using the water velocity to apply drag. (Top) No blendshape hair. (Middle)
Blendshape hair. (Bottom) Blendshape hair with water.

locations, enabling better collision handling, preserving more hair-hair interactions,

etc.

2.3 Layering Framework

Our proposed framework consists of two layers: kinematic skinning layer, and using

the kinematically skinnned KDSM to run dynamic simulations and blendshape hairs.

The first layer consists of simulating a tetrahedral air mesh, and is described in Section

2.3.1. The second layer involves either dynamic hair simulation (Section 2.3.2) or

blendshape hairs (Section 2.3.3), coupled with a hair-water solver as discussed in
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Section 2.3.4. Finally, length preservation and pushout are applied as a post-process

per frame as discussed in Section 2.3.1.

2.3.1 Skinning Kinematic Hair

Although practitioners often initialize their skinning algorithms using a default or rest

pose, and such a process could be used to create our KDSM, we instead independently

generate a separate KDSM for each animation sequence of interest in order to obtain

higher visual fidelity. Given an animation sequence, we begin on the first frame and

construct a tetrahedral mesh for a region of air that will contain the hair for the entire

animation sequence. Then the goal becomes to warp this mesh forward in time so

that it follows the animation while at the same time capturing other desirable effects.

This process is facilitated using the kinematic deformation of the character’s skin just

as skinning algorithms use the kinematic motions of the character’s so-called bones.

Moreover, we actually use the kinematic deformation of both the character’s skin

and its volumetric interior. This is accomplished by repeatedly creating a volumetric

morph from the interior of the creature consecutively from one frame to the next using

the methods discussed in [7, 30] along with the feature detection from [30] if the mesh

topology is not consistent from frame to frame. One could perhaps alternatively use

an approach like that of [103] to produce deformations for the tetrahedral mesh to

achieve faster simulation rates, given that the reduced model is acceptable.

We generate the tetrahedral mesh for the first frame of an animation sequence

using the method of [67] by constructing a level set function whose interior encloses

the region of interest. In practice, we experiment with multiple offset values until the

level set safely contains all hairs. For examples with long hairs or unusual hairstyles,

we create custom geometry and convert it to a level set such that all hairs are safely

contained. Using this level set, the method of [67] is used to generate the tetrahedral

mesh as usual, and any extra tetrahedra that might be generated too deep inside the

creature to be of interest can simply be deleted. A sufficient number of tetrahedral

mesh nodes will be required interior to the character in order to guarantee that the

tetrahedra adequately cover the desired air region as well as to provide boundary
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conditions on the mesh that are specified using the results of the volumetric morph.

See Figure 2.3 (top), Figure 2.5 (top left), and Figure 2.14 (top right).

Next, the morph is used to move every node of the tetrahedral mesh interior to

the creature from frame to frame, while the nodes exterior to the creature can be

connected to each other and the interior nodes via one’s favorite mass-spring system

(as in our implementation) or finite element system and simulated just as in [91, 92]

except that the base of our mesh is driven by an underlying morph of the deforming

character from frame to frame as opposed to being rigidly attached to a rigid scalp.

The interior nodes alone do not provide sufficient boundary conditions because of the

relative sparsity of the KDSM particles compared to the desired dense quality of the

boundary conditions due to the detailed surface representation and the number of hair

follicles. In order to provide sufficient boundary conditions and thus allow for wanted

hair shearing, we place additional zero-length springs connecting points embedded

on the 2D triangular mesh representing the character’s skin to their corresponding

barycentric locations in the tetrahedral mesh. It seems that adding these extra zero-

length springs wherever one anticipates placing a hair follicle is sufficient. We stress

that this dynamic simulation only needs to be done once to skin the air around the

creature, and then the results can be stored as a kinematically prescribed motion to be

utilized for all future hair animations/simulations that make use of such a motion for

their volumetric approximation. As such, it is feasible for an artist to post-process

the kinematically deforming tetrahedral mesh using various modeling tools either

procedurally or directly as desired. See Figure 2.3 (top row) for an example of a

KDSM for an animated creature.

One of the major benefits of this approach is that millions of hairs can be animated

just as easily as hundreds since the tetrahedral mesh is indifferent to the number of

embedded hairs. With the KDSM defined for the creature, we can now embed hair

particles in it. Embedding can be computed via

X(i) =
d∑

j=1

wID(i,j)YID(i,j) (2.1)
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Figure 2.5: (Top left) KDSM. (Top right) No simulation. (Bottom left) Simulation
with weak zero-length spring attachments to the KDSM. (Bottom right) Simulation
with stronger zero-length spring attachments to the KDSM.

where X is the position/velocity of embedded particle i, Y contains the parent

particles’ positions/velocities of embedded particle i, and w is a set of barycentric

weights. d is the dimension of the simplex from which we are interpolating (d = 3 for

a triangle mesh and d = 4 for a tetrahedral mesh). ID(x, y) returns an index for a

parent particle given an embedded particle id x, and an iterator y.

Each hair simply has its base hair particle embedded to follow its corresponding

hair follicle on the surface of the character’s triangle mesh skin and has all other

particles embedded to follow their corresponding locations in the tetrahedral mesh

using barycentric weights along the lines of the hard bindings in [82]. As long as

the mesh deforms in a reasonable way, the hairs also behave nicely. The only post-

processing we do concerns length preservation and collisions with the character, and

all hair-hair interactions and self-collision is ignored. Length preservation is accom-

plished by starting from the root of each hair and shortening each segment to its rest

length while modifying the embedded barycentric coordinates of the perturbed par-

ticles (similar in spirit to [72, 80]). Interpenetrations with the character are handled

using the pushout method from [18] in order to preserve the style of the hair. All
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Figure 2.6: Starting from the rest hairstyle (top left), individual hair and volumetric
hair simulations as well as procedural techniques were used to create clumped (top
right), sagged (bottom left), and matted (bottom right) hairstyles, which were then
all bound to the animation sequence from Figure 2.3 using that KDSM.

points that lie inside the character at the end of a frame are projected to a distance

outside the character’s surface in the range of [0, τ ], where τ is a user-specified value

(for τ = 0 all interpenetrating points are projected to the surface of the character,

while τ > 0 allows points to maintain some relative offset after projection in order to

preserve detail). See Figure 2.3 (bottom row) for an example of hair skinned using

this approach.

Typically the hair would only be specified in a reference pose of the character

and would not be available on the first frame of an animation. In this scenario, we

pre-bake an in-between-animation from the reference pose to the first frame of the

animation and apply our method to create a KDSM for this in-between-animation.

Of course, an artist may wish to touch-up the resulting hair as desired.

2.3.2 Simulating Dynamic Hair

Dynamic motion can be incorporated into our pipeline on top of the KDSM in one of

two ways. The first is to bind a simulated volume mesh to the KDSM and have hairs
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Figure 2.7: Our framework supports selective activation of individual hairs for simula-
tion in order to only activate hairs that are undergoing collision. Here, fully kinematic
hairs are shown in yellow while hairs activated for individual simulation are shown in
green.

follow embedded positions in this simulated mesh. The second is to activate hairs for

per-hair simulation using an underlying constitutive model, and binding these hairs

to the KDSM for structure and support.

Simulating a Skinned Mesh

The simplest way to add dynamic motion is to duplicate the KDSM in the first frame,

endow this new tetrahedral mesh with one’s favorite mass-spring or finite element

system, connect it to the KDSM with zero-length springs, and subsequently simulate

it. Notably, the strength of the simulated mesh’s constitutive model can be reduced

significantly from what would otherwise be required because the mesh structure is

already supported by its attachment to the KDSM. This provides dramatic increases

in efficiency, especially considering that an artist would typically simulate this new

mesh over and over with the aim of generating the desired result. Moreover, one

can readily refine the simulation mesh where more detail or degrees of freedom are

desired and simply bind the refined mesh to the unrefined KDSM using barycentric

coordinates without requiring the generation of a new KDSM.
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Further efficiencies can be realized by noting that the KDSM already contains a

significant portion of the desired motion, e.g. inertial effects and deformation, and thus

the task of simulation is merely to generate perturbations to this motion—a task far

easier to accomplish! For example, consider the spring force generated by comparing

the current length of an edge in the simulated mesh to its rest length in the first frame.

Since the endpoint particles tend to follow their paths as dictated by the KDSM

via zero-length springs, they will experience compression/expansion forces resisting

expansion/compression of the corresponding time-animated edge in the KDSM. That

is, the simulated mesh resists the deformation of the KDSM. In contrast, one could use

rest lengths that were time-animated to follow their corresponding current lengths in

the KDSM, ameliorating the simulated mesh’s resistance to the KDSM deformation.

Moreover, an artist could choose any intermediate value for the time-animated rest

lengths and even vary this choice spatially across the KDSM based on where more

or less resistance to the KDSM deformation is desired. This is far more efficient and

intuitive than trying to control the strength of springs in order to obtain the desired

resistances to deformation in a standard simulation without a KDSM. This strategy

can be used to give artists additional control over any geometric-based force using

the KDSM as a time-animated guide.

A similar procedure can be used for the time integrals of the force, i.e. the velocity

and position. Increments of the velocity or a fraction thereof can be added to simu-

lated particles so that they better follow their corresponding particles in the KDSM,

and likewise for position. For non-geometric-based forces such as gravity and drag,

since their effects were already included in the KDSM, they do not require inclusion

again. However, one might want to use scaled down versions of these forces in order

to attain more interesting perturbations of motion for the simulated mesh from the

KDSM. Figure 2.4 shows the results obtained by swishing a creature back and forth

underwater using the water velocity to apply drag, where the hair motion is obtained

by following barycentric coordinates in the simulated mesh.
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Figure 2.8: (Left) Hairs are individually simulated for high fidelity collision handling.
(Right) Individual hair simulation is also used for long hairstyles. Both examples
benefit from structure and support provided by the KDSM.

Simulating Individual Hairs

Simulating individual hairs is often necessary when discontinuous behavior between

nearby hairs is desired. For example, concerning water simulation, wet hairs clump

or cluster due to cohesion/adhesion of the water/hair. A simple way to add dynamic

motion to individual hairs is to use soft bindings [82] connecting a zero-length spring

between each particle of the hair and its desired position either in the KDSM or in

the simulated mesh, whichever is desired. Although this technique works in practice,

better results are obtained if the individual hair is given its own constitutive model

even if the model is relatively simple using only edge springs using [81]. Although

we use the mass-spring method of [81] for hair-hair interactions and collisions for the

examples shown in Figure 2.8, we stress that the benefits of the KDSM are agnostic

to the underlying constitutive model. Just as was true for the simulated mesh, a

relatively weak mass-spring system may be used for added efficiency since the KDSM

provides structure and support. That is, any individual hair or guide hair simulation

method can benefit from our KDSM. Figure 2.5 shows a mohawk hairstyle undergoing

a dynamic simulation, bouncing around and deviating either more or less from the



18 CHAPTER 2. HAIR ANIMATION AND HAIR-WATER INTERACTION

KDSM based on the strength of the zero-length attachment springs. Figure 2.8 depicts

a long hairstyle from [48] that is animated using per-hair simulation with attachment

springs to an underlying KDSM. Note that one could achieve hair clumping effects

by using adhesion springs between hair curve segments as illustrated in [81], although

we did not experiment with this.

Leveraging the fact that the hair will be supported by the KDSM, we utilize a

method designed to mostly preserve the shape and style of the individual hair. This is

accomplished by creating an individualized tetrahedral simulation structure for each

hair, similar to [16], as follows: first we create a bounding box for the hair giving it

a characteristic thickness so that it has reasonable structure. Then, we cut this box

Figure 2.9: Visualization of structure contributing to the final hair shape: the simu-
lated hair (black curve) is connected to embedded positions within the KDSM (red
box) and to shape-preserving tetrahedra (blue boxes) by zero-length springs (yellow
and green, respectively).
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Figure 2.10: (Top row) Using the hairstyles from Figure 2.6 and the KDSM from
Figure 2.3 along with our blendshape system, we make a creature grow progressively
wetter as it walks. (Bottom row) Close ups of top row.

into 1 to 4 sub-boxes along the length of the hair. Really short hairs get 1 sub-box

and regular to long ones get 4, based on trial and error to find the best number.

While a straight hair would tend to go up the center of these boxes,

curly hair would weave in a helical pattern through the boxes (see figure).

Subsequently, we turn each box into 5 tetrahedra and create a mass-spring

model to simulate the entire structure. It is best if the base of the bounding

volume lies inside the character or is projected to its surface; either way,

it provides Dirichlet boundary conditions following the animation via tetra-

hedral or triangle embedding respectively. Each simulated hair particle is

given a second zero-length spring embedding it into this local tetrahedralized

bounding box structure that aids in hair-shape preservation. In summary,

each hair particle has two separate connections: one to the KDSM to preserve its

structure and one to its tetrahedralized local bounding box to preserve its shape and

style, illustrated in Figure 2.9.

In order to further increase the efficiency of individual hair simulation, we often

let large numbers of hairs remain unsimulated following the KDSM (or simulated

mesh), only activating individual hairs for simulation on an as-needed/desired basis.

For example, we can activate individual hairs only when those hairs are in contact or

collision with another object similar to [22], as in Figure 2.7, which greatly reduces

time spent on simulation discussed in examples section. When a hair is activated, it

starts out in its barycentrically bound position and is endowed with its precomputed

tetrahedralized local bounding box, internal constitutive model, and constraints. Any
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individual hair can also be deactivated, at which point each particle of the hair is

kinematically returned to its target position in the KDSM (or simulated mesh) slowly

under a prescribed time scale using an analytic solution for position and velocity

matching (see [98]) so as to not appear jarring. In this way, the user can balance the

tradeoff between the fidelity of per-hair simulation and its increased computational

Figure 2.11: (Top) First a water simulation is performed, ignoring the hair. (Bottom)
Then in a post-process, a procedurally generated wet map is used in the blendshape
system to locally (in space and time) interpolate between various hairstyles such as
those in Figure 2.6.
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expense with the more efficient approach of driving the hairs through their embedded

positions.

Note that the length preservation and object interpenetration strategies discussed

in the previous section are also used during dynamic simulation. Also note that at

render time one could post-process the hair, blending particle positions between their

current simulated positions, their target positions in their simulated local bounding

box structures, and their target positions in the KDSM (or simulated mesh). Mo-

tivated by [91, 92], we note that a particularly interesting strategy is to use more

kinematic motion near the root and more dynamic motion near the tip of each hair.

As an example where the simulation of individual hairs is required, we create

a clumped hairstyle by selecting a number of hairs to serve as cluster centers and

subsequently using hair-hair attraction forces (see e.g. [21, 24, 94, 95, 81]) to pull

surrounding hairs towards the cluster centers. There are obviously a number of ways

in which this can be accomplished, but we stress that an important advantage of

our method is that we can bind the new hair locations into the KDSM so that any

existing animation can readily be played back with either the original hairstyle (see

Figure 2.6 top left) or the new clumped hairstyle (see Figure 2.6 top right). That is,

as one generates many different hairstyles or perturbations to those styles, they can

readily be played back using the kinematic mesh with no additional effort required.

One can perturb the clumped hairstyle into a sagged hairstyle simply by simulating

a dynamic tetrahedral mesh parented to the KDSM under the effects of gravity and

increased mass from water saturation. Figure 2.6 (bottom left) shows the result used

in an animation. Similarly, more extreme wetting along with subsequent projection of

the hair to the creature’s skin results in a matted hairstyle, which can also be pushed

through the animation sequence (see Figure 2.6 bottom right).

2.3.3 Blendshape Hair

The KDSM readily facilitates a straightforward implementation of a blendshape hair

system. Each hair particle has different barycentric coordinates (potentially in dif-

ferent tetrahedra) for each hairstyle, e.g. Figure 2.6 for dry, clumped, sagged, and
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Figure 2.12: (Top) Creature walking out of water. (Bottom) Close ups of top row.

matted hair, respectively. This information can be used to specify the barycentric

location of a particle within the KDSM for any combination of hairstyles in standard

blendshape fashion. This obviously allows an artist to sculpt new or modify existing

hairstyles for use in such a system. Motivated by [21, 94, 95, 93, 45], which describe

and model many of the various interactions and styling changes resulting from wet

hair, we create a wetness parameter that linearly interpolates from our dry style (see

Figure 2.6 top left) to our sagged style (Figure 2.6 bottom left) as the wetness in-

creases. A naive blendshape system could interpolate between between the world

space positions of hair particles to target a specific frame of the animation. However,

our KDSM automatically pushes this interpolation through the entire animation, al-

lowing us to blend between dry and sagged styles for any subsequent configuration of

the creature based on a per-particle wetness. Thus, we can take the KDSM from Fig-

ure 2.3 (top) and use our blendshape system to interpolate from the dry style to the

sagged style and finally to the matted style, watching the creature grow progressively

wetter as it walks. See Figure 2.10. We stress that Figure 2.10 only required dry,

sagged, and matted styles in a reference frame, since the KDSM provides a deforming

coordinate system which implicitly allows any style in the reference frame to have

meaning in every frame of the animation.

A blendshape system provides a dramatic increase in efficiency, especially since

obtaining visually impressive interactions between water and hair is often highly sub-

jective and the subject of multiple iterations of artistic and directorial design. A

typical implementation of our system would proceed as follows. First, ignoring the

hair, run a water simulation to obtain the character’s influence on the water taking
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advantage of the layering of our framework, see Figure 2.11 (top). Then, if desired,

simulate a tetrahedral mesh bound to the KDSM, potentially affected by water drag,

etc., as in Figure 2.4. Finally, as a post-process, use our blendshape system along

with the wetness parameter in order to obtain the desired hairstyle. For example,

underwater hair utilizes the dry blendshape while floating around freely following its

binding in the dynamic mesh. Hair near the water increases its wetness moving from

a dry to a sagged style based on spongelike porous flow effects. Hair that has been

pulled out of the water quickly changes from a dry to an either sagged or matted

style depending on the degree to which water is retained. See Figures 2.4 and 2.11

(bottom). Additionally, we specify an interpolation weight per particle to control the

speed of the interpolation to the desired hairstyle, e.g. so that fur on the creature’s

paws becomes matted faster than the fur elsewhere on the creature. These weights

vary smoothly along the creature’s legs so that the blendshape interpolation does

not create obvious discontinuities in the hairstyle. When the simulation of individual

hairs is desired, this can be done after utilizing the blendshape system by using the

blendshape hair to prescribe target locations.

Blendshape systems are notorious for the various artifacts they exhibit. However,

our implementation of length preservation and pushout strategies eliminate all visible

artifacts from blendshape system. Finally, note that we tuned rendering parameters

for each hairstyle and that each hair is rendered using a blending of rendering pa-

rameters governed by the same wetness parameter used in the blendshape system to

blend the various hairstyles.

2.3.4 KDSM for Hair-Water Interaction

Motivated by [79] (see also the follow-up work of [59]), who proposed the use of

an Eulerian Cartesian grid to aid in the simulation of hair-water interactions, we

briefly discuss benefits that can be obtained using our KDSM. They rasterize the

complex porous structure of hair into a Cartesian grid and subsequently use the

porosity values to aid in modeling many interesting wetting effects of hair including

water absorption and diffusion, hair-hair cohesion induced by the surrounding water,
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water flow throughout the hair volume, water dripping from the hair, and shape

transformations of wet hair. Of course, if our water simulations were carried out

on an Eulerian Cartesian grid, as is often typical, then their proposed methodology

could be implemented on that same grid in conjunction with the water simulation.

However, the grid cell size that would be appropriate for a large domain would not

have the appropriate resolution near the hair volume, and thus one would have to

resort to using a much finer grid near the hair and subsequently coupling the two grids.

Note that [79] only focused on the very fine grid very close to the hair. Similarly, our

KDSM is also a very fine mesh close to the hair, but it has several distinct advantages

over a simple Cartesian bounding volume. For example, it is tighter fitting to the

hair volume and thus can more readily be higher resolution. It also moves with the

hair, thus once again making it tighter fitting and therefore higher resolution than a

Cartesian bounding volume. It also has the potential for higher accuracy since water

absorbed by and carried with hair would move along with the KDSM and not require

advection, which hinders accuracy. Similarly, water which is diffused through the

hair would only need a small motion for the diffusion and could mostly ignore the

hair motion since the KDSM and the hair move together. However, water which falls

from the hair or moves at a velocity different from the hair would require an arbitrary

Figure 2.13: Water poured over creature.
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Lagrangian-Eulerian style advection scheme as opposed to an Eulerian one.

Along these lines, we briefly illustrate how the KDSM can be used to modify

water simulations based on the hair, completing the other half of two way hair-water

interaction since we discussed water’s influence on hair throughout the paper. One

simple but dramatic effect that hair has on water is the drag that hair exerts on it.

To accomplish this effect using the KDSM, we first rasterize the hair porosity onto

the KDSM using the hair size and occupancy, while also interpolating hair velocity

to the nodes of the KDSM. Then it is straightforward to apply drag to any Cartesian

grid cell containing water that overlaps any fraction of the KDSM containing hair.

Figures 2.12 and 2.13 (see also Figure 2.1) show the KDSM being used in this fashion

in conjunction with the rest of the ideas presented in this paper.

Notably, ignoring hair, the KDSM is useful for water interactions with any object

as it provides a mechanism for allowing that object to affect the surrounding water in

a volumetric way. In Figure 2.14 we create a KDSM for the animation of a creature

without hair breaching the water surface. Signed distance values are stored in the

KDSM based on the reference pose in which the tetrahedral mesh was created. Then

a falloff value based on the signed distance is used to apply drag from the KDSM

to the water in a volumetric way using the velocities of the KDSM. This allows one

to control the boundary layer effects; in particular, one can control how much water

the creature pulls away from the surface simply by turning the drag up and down,

as shown in Figure 2.14. This mechanism provides significantly more control to the

artist as opposed to relying entirely on the surface of the object to generate these

sorts of effects. Note that the artist can also easily control when the water separates

from the creature simply by turning down/off the drag.

2.4 Examples

Generating the KDSMs for our examples takes an average of 10 minutes per frame in a

single core machine, and frames can be processed in parallel as they have no temporal

dependence. Computation time for simulating a dynamic mesh or individual hairs

varies, since as the dynamic hair deviates more and more from the original KDSM
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Figure 2.14: (Top) Creature geometry and KDSM. (Left) No KDSM. (Right) Same
frames as on the left, except using KDSM for increased drag on the water from the
creature.
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Example
Hair KDSM Frame

Particles Strands Vertices Tets Time

Kinematic
Mohawk

15,784 1,263 262 895 17s

Dynamic Hair
Mohawk

15,784 1,263 262 895 165s

Long Hair
Mohawk

69,439 9,703 412 1,557 669s

Carpet 113,693 2,145 8 5 50s

Carpet
Adaptive

113,693 2,145 8 5 10s

Kinematic
Bear

20,885,989 540,078 3,727 16,170 79s

Blendshape
Bear

20,885,989 540,078 3,727 16,170 80s

Bear Slosh 20,885,989 540,078 3,727 16,170 181s

Bear Pour 20,885,989 540,078 3,727 16,170 2183s

Bear Water 20,885,989 540,078 3,727 16,170 2957s

Whale Breach N/A N/A 3,661 16,694 201s

Table 2.1: List of examples with their resolutions and average runtime per frame.
Note that the first layer, generating the KDSM, is not included.

embedding it will need a stronger mass-spring system in order to sustain its shape,

requiring more time to simulate. The blendshape hair component runs in 25 seconds

on average on a single core and can be trivially parallelized since the per-hair particle

data for the blendshapes is independent of other hairs. We use an altitude spring

stiffness of 4.14N and an edge/zero-length spring stiffness of 41.4N for all examples.

Dynamic hair which is used to simulate individual hairs uses zero-length springs with

stiffnesses of .0414N. The edge spring stiffness of the shape preserving structure is

.414N, and its altitude spring stiffness is .0414N. The dynamic KDSM for the bear

creature (Figure 2.4 and 2.13) has edge spring stiffnesses of 41.4N and altitude spring

stiffnesses of 4.14N. All springs are critically damped. We compare our method to



28 CHAPTER 2. HAIR ANIMATION AND HAIR-WATER INTERACTION

the standard mass spring hair model of [81], which takes 108 hours per frame without

self-collisions or repulsions. As expected, our algorithm does not produce the same

result because collisions and repulsions are turned off for mass spring hair test due to

obvious performance reasons.

The kinematic mohawk example (Figure 2.5) utilizes kinematic skinning only,

simply computing barycentric locations of each hair particle on top of the KDSM and

applying the length preservation and pushout steps. The dynamic mohawk example

(Figure 2.5) utilizes kinematic skinning, the shape preserving hair structure, and soft

constraints connecting hairs to both hardbound hairs and shape-preserving hairs.

Since individual hairs are simulated, this example takes longer to run than its purely

embedded counterpart. The carpet example, which consists of 2,145 hair strands,

runs in 50 seconds per frame with all hairs activated, while with adaptive activation

the example takes only 10 seconds on average with no more than 150 hairs activated

at any time. The kinematic bear example (Figure 2.3) is like the kinematic mohawk

example but has significantly more hairs (i.e. 1K hair strands vs 540K hair strands).

The blendshape bear example (Figure 2.10) is running blendshape hair on the results

of the kinematic bear example. There is virtually no difference in timing for this

example compared to the kinematic bear since we load all blendshape data from

the disk at the very beginning of the simulation and simply run linear interpolation

on each hair particles while the kinematic skinning test has to compute each hair

particle’s location every frame. The bear slosh and bear pour examples (Figure

2.4 and 2.13) use dynamic skinning. The bear water example (Figure 2.12) is run

with particle level set water simulation, porosity rasterization from the KDSM, and

blendshape hair. Note that the performance of bear examples involving hair-water

interaction is dominated by water simulation times; hair components maintain similar

performance compared to examples without hair-water interaction. The whale breach

example (Figure 2.14) consists of a particle level set water simulation with adhesion

applied to the background eulerian grid. Examples were run on a desktop machine

with a 12 core 3.06GHz CPU, 96GB RAM, and a 500GB SSD. A summary of the

resolutions and timings of our examples is shown in Table 2.1.



2.5. CONCLUSION 29

2.5 Conclusion

We proposed a new KDSM data structure that allows one to skin the motion and

deformation of millions of hairs, and showed how this data structure greatly increases

the efficiency of subsequent simulations whether or not the hair is treated as a vol-

ume or as individual hairs. We also showed that the KDSM enables a quite simple

implementation of a blendshape hair system. Notably, the KDSM is intrinsically part

of the animation and does not dictate any particular approach to simulation. Thus,

one can use their favorite techniques, whether simulating hairs individually or as a

volume, whether using masses and springs or finite elements or any other model,

etc. A KDSM provides structure and support greatly increasing the efficiency of any

simulation method. Furthermore, we illustrated that the KDSM can be quite useful

for hair-water interactions and even for water-character interactions without hair. As

future work, we plan to investigate how one might create a volume of fluid solver via

an arbitrary Lagrangian-Eulerian framework directly on the KDSM and subsequently

couple such a solver to a standard water simulation on a background Cartesian grid—

albeit noting that it can often be quite difficult to render the results of a volume of

fluid simulation in a visually pleasing manner. It would also be interesting to consider

using our approach for cloth simulation instead of hair.



Chapter 3

Character-Water Interaction

In this chapter, we propose a novel volume conserving framework for character-water

interaction, using a novel volume-of-fluid solver on a skinned tetrahedral mesh, en-

abling the high degree of the spatial adaptivity in order to capture thin films and

hair-water interactions. For efficiency, the bulk of the fluid volume is simulated

with a standard Eulerian solver which is two way coupled to our skinned arbitrary

Lagrangian-Eulerian mesh using a fast, robust, and straightforward to implement

partitioned approach. This allows for a specialized and efficient treatment of the

volume-of-fluid solver, since it is only required in a subset of the domain. The com-

bination of conservation of fluid volume and a kinematically deforming skinned mesh

allows us to robustly implement interesting effects such as adhesion, and anisotropic

porosity. We illustrate the efficacy of our method by simulating various water effects

with solid objects and animated characters with our novel surface reconstruction

method.

3.1 Introduction

Character-water interaction is a widespread phenomenon in the visual effects industry,

and there have been many efforts to push for higher quality water interaction with

animated characters such as King Kong in Kong: Skull Island (2017), Hank the

octopus in Finding Dory (2016), and various characters in Moana (2016).

30
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Figure 3.1: (Left) Whale breaching with the PLS method using automatically gener-
ated removed particles for spray. Very little of the water volume follows the whale’s
motion because of volume loss on the relatively coarse Eulerian background grid.
(Right) Using the same Eulerian grid, our ALE based VOF method on the KDSM
produces much more visually interesting sheeting and spray effects.

Arguably, the most obvious approach to obtaining more detailed features any-

where in the domain is to place more degrees of freedom in the region of interest. A

number of adaptive methods have been developed such as Adaptive Mesh Refinement

(AMR) [89], octree data structures [61], [60], [1], lattice based tetrahedral methods

[25], [11], [8], and Chimera grids [33], [34]. While these methods greatly improve water

simulation detail through adaptivity, various authors have noted numerous drawbacks

including the need to remesh very often, difficulties in implementation, performance

bottlenecks induced by high communication costs, and issues related to domain de-

composition due to a large number of small patches. These issues are exacerbated

when the adaptivity is required near boundaries with animated characters, since the

character motion can rapidly change the region in space where the adaptivity is re-

quired. A more natural approach would be to use an adaptive mesh that moves with

the character such as the recently proposed kinematically deforming skinned mesh

(KDSM) of [56]. This allows one to prebake the adaptivity so that on-the-fly refine-

ment is not required during the simulation. This makes the method straightforward

to implement and robust in its handling of delicate phenomena.

Even with additional degrees of freedom near the animated character, the highly
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Figure 3.2: (Top Left) A KDSM mesh around a whale in a normalized pose (also
known as T-pose or rest pose). (Top Right) A sample animation showing the KDSM
skinned to follow an animation of a whale breaching. (Bottom Left) A KDSM mesh
around the ball. (Bottom Right) A sample animation showing the KDSM skinned to
follow an animation of a bear walking on a shore.

dynamic water motion and thin films are notoriously difficult to simulate due in large

part to both volume loss and difficulties with imposing proper boundary conditions

between the water and the character. We address volume conservation by proposing

a novel volume-of-fluid (VOF) method implemented on the KDSM. Although our

proposed VOF method is novel, it is similar in spirit to other VOF methods such as

[65], [66] in that no fluid volume is lost, especially as compared to typical Eulerian

methods. VOF method is a well known technique as demonstrated in [47], [17], [77],

and [90]. There have been some recent interesting works on boundary conditions

between solids and fluids such as [108], [105] using an Eulerian fluid grid (see [6]

for SPH); however, it is more natural to specify these types of boundary conditions

when the fluid grid is moving along with the solid in its Lagrangian frame, even if it is
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Figure 3.3: Same as Figure 3.4, but using an even smaller water stream accentuating
the benefits of our approach especially when considering volume conservation.

deforming a bit in that frame as is the case with KDSM. With this treatment, much of

the fluid moves along with the mesh being driven by the character animation (which

is also driving the mesh) meaning that less fluid volume flows from one computational

cell to another. This is the typical arbitrary Lagrangian-Eulerian (ALE) approach,

see for example [39], [40], [55]. Notably, our method significantly differs from existing

ALE implementations in that our ALE mesh is prebaked based on kinematically

prescribed motion and has topology that remains consistent throughout the entire

animation sequence. This separation of the remeshing step resolves a key problem

of ALE based methods which can lack robustness due to the numerical instabilities

caused by ill-formed elements–this can now be addressed during a preprocessing step.

In order to increase the overall efficiency and efficacy of our approach, we only

utilize the ALE based VOF method on the KDSM near the animated character while

using a standard Eulerian based Cartesian grid solver in the rest of the domain, in our

case the particle level set (PLS) method [35], [36], including spray particles [62]. It is
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important to note that the PLS method is a hybrid method combining particle and

grid representations, and early work was presented in [43] where they implemented a

precursor to PIC/FLIP while removing unneeded interior particles far from the surface

to boost performance and using level set to reconstruct smooth surface. Recently,

[41] proposed further improvements of PLS and FLIP hybrid method. Thus, PLS

and PIC/FLIP share important commonalities, and our VOF method can improve

PLS or PIC/FLIP or any other method combining particle and grid representations.

Note that our spray particles carry mass and momentum as in [62] for visual

quality when spray particles interacts with water surface instead of using massless

particles as in vanilla PLS. Importantly, the conservative nature of our VOF solver

allows for relaxation of the numerical approach especially since the VOF solver is

only required in a small subset of the domain near the character while a standard

Eulerian solver is used elsewhere. Thus, we devise a straightforward partitioned (as

compared to monolithic) approach to the coupling of the fluid flow equations between

the Eulerian Cartesian grid and the ALE based VOF solver on the KDSM; see Section

3.4. Our partitioned approach allows unit testing for each component which greatly

streamlines the development process. Importantly, this combination of a standard

Eulerian solver on the bulk of the domain with an ALE based KDSM mesh near

the character allows the proposed VOF scheme to be incredibly simple, as discussed

in Section 3.3, which is quite notable given the typical high level of complexity one

usually confronts with VOF methods.

The first contribution of this paper is our strategy of prebaking the dense ALE

mesh which occupies the space near the object or creature of interest, taking advan-

tage of the adaptivity to capture detailed water phenomena based on the intuition

that most interesting water effects are focused near the creature. We achieve a robust

simulation method by separating the nontrivial mesh processing operations from the

simulation stage and incorporating them into a preprocessing stage, where we pre-

compute various auxiliary data in order to improve the performance of the simulation.

Our second contribution is our novel VOF method, which conserves volume within

the ALE mesh, whereas the PLS method in the background alone does not. Our

approach of conserving volume near the object or creature of interest allows us to
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Figure 3.4: (Top Left) A standard PLS simulation on a relatively coarse Eulerian
grid. (Top Right) Our ALE based VOF method on the KDSM achieves better water
sheeting and volume conservation using the same Eulerian grid. (Bottom Row) Ap-
plying adhesion forces to both simulations produces the desired clinging to the ball
with our method but has almost no effect on the PLS simulation.

implement various adhesion and porosity effects robustly and with mechanisms for

artistic control. The third contribution of our method is the straightforward parti-

tioned approach for coupling the coarse background Eulerian grid and our fine ALE

mesh, which greatly streamlines the development process. Last, we demonstrate our

novel water reconstruction scheme to capture smooth, time-coherent water surface

from our VOF water merged with the background water.

3.2 KDSM

Following [56], we generate a KDSM from a tetrahedral BCC (body centered cubic)

lattice as in [67] using a thickened level set of the triangulated surface skin mesh of
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a creature or an object in a normalized pose (see Figure 3.2 left). Then, given an

animation sequence of the creature’s triangulated surface skin mesh, the KDSM nodes

inside the creature are morphed to follow the animation as per [7, 30] capturing the

kinematic deformation of the creature’s skin and its volumetric interior. We connect

the KDSM nodes that are exterior to the skin mesh of the creature to one another

and to the internal nodes via a constitutive model (e.g. mass spring), so that the

KDSM nodes that are external to the creature also follow the animation (see Figure

3.2 right). In addition, zero length spring attachments are connected between the

creature’s skin mesh and corresponding barycentric locations in the KDSM in order

to obtain more accurate deformations of the KDSM near the creature’s skin.

[56] embedded hair particles in the KDSM so that they would follow the skinned

animation sequence. Each hair’s base particle is embedded on the surface of the

character’s triangle mesh skin and the rest of hair particles are embedded in the

tetrahedral mesh using hard bindings as in [82]. They also showed how a duplicated

KDSM which is following the original constrained with zero length springs could be

used to produce more dynamic hair behavior. Since the original KDSM sequence

contains a significant portion of the desired motion, further iterations for dynamic

hair behavior becomes much more efficient. In addition, they showed the benefits

of the KDSM when simulating individual hairs as well as how to use the KDSM

to implement a blendshape system including the effects of clumping, sagging, and

matting. They simulated individual hairs using [81] and soft bindings (see [82])

connecting hair particles and their corresponding desired positions in the KDSM

via zero length springs. They proposed a shape-preserving tetrahedral column to

maintain the original style of the hair also connected to hair particles via zero length

springs. The blendshape hair component is implemented as a collection of barycentric

coordinates for each hair particle, and can be interpolated in time to implement a

change in hairstyle over time (e.g. bear getting wet in the water). Then length

preservation and interpenetration is run as a post-process, shortening the each hair

segment to its rest length (see [72, 80]) and applying pushout method from [18].

Interestingly, they demonstrated how the air volume enclosed by the KDSM could be

utilized to add adhesion and drag effects, porosity for hair, etc.
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A major shortcoming of this prior work in regards to water simulation is that

the KDSM is merely used to provide information such as forces that augment the

treatment of the Eulerian grid. Thus, all the typical drawbacks of volume loss, etc.,

are not only still present but potentially worsened by these additional forces. See, for

example, Figure 3.4 and 3.3.

3.3 KDSM Fluids

Our novel ALE based VOF method on the KDSM produces compelling results even

though it has none of the complexities associated with typical VOF methods–even

the volume conservation step is quite simple. We stress that the ability to use such

a simple method is due in large part to the partitioned coupling discussed in Section

3.4, the adaptivity of the KDSM, exact volume conservation, and the Lagrangian

nature of the KDSM as it follows the animated creature. Our VOF method fully

conserves volume within the KDSM, while the rest of the domain simulated using the

PLS method does not.

3.3.1 Precomputation

Starting from the original KDSM animation, we precompute auxiliary information

such as adaptivity by subdividing the KDSM until a desired resolution is reached (for

our examples, we subdivided KDSM multiple times until the size of tetrahedron is

4 to 8 times smaller than the background grid cell size). Prebaking subdivisions to

obtain per-frame ALE meshes with consistent topology greatly increases the robust-

ness and minimizes computation time as compared to typical ALE remeshing. We

subdivide using [67], but only utilized the subdivision operation part without any

adaptivity features as we wanted an evenly subdivided ALE mesh. Although we opt

to precompute our KDSM, one could subdivide on-the-fly if desired. Note that we use

a relatively coarse KDSM to run a mass spring simulation and then subdivide the re-

sulting KDSM for performance reasons. One can always use a dense KDSM to obtain

better boundaries near the creature’s skin, but we found the current scheme sufficient
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for our examples. We additionally precompute a number of useful quantities such as

per node velocities and a level set volume for every frame of the animation. Every

cut cell tetrahedron, those containing a part of the creature’s surface, is assigned a

surface normal and object velocity. Those surface normals and object velocities are

extrapolated to every tetrahedron of the KDSM exterior to the creature using the

level set information.

Per tetrahedron solid occupancy is precomputed in the cut cells using point sam-

ples and the quadrature formula of [107] testing how many point samples are inside of

the creature using the level set representation. Instead of using the exact volume, we

simply use the fraction of point samples inside and outside the creature to compute an

approximate volume. This added simplicity is equivalent to a slight sub-tetrahedral

perturbation of the solid surface. Obviously, this could be done more accurately, but

we found that this simple method worked quite well, and simplicity and efficiency

is highly desirable when one might want to refine near the surface of the creature

on-the-fly.

Our proposed volume conservation method is motivated by the shock propagation

for rigid bodies from [44]. As such, we precompute the rank of each tetrahedron as

its topological distance from the creature, similar in spirit to the contact graph from

[44]. Tetrahedra fully inside the creature are assigned a rank of −1, and partially

filled tetrahedra are assigned rank 0. Then, all tetrahedra with unassigned ranks

that are node neighbors of rank 0 tetrahedra are assigned rank 1. Rank 2, rank 3,

etc. are assigned similarly.

3.3.2 Advection

We store vector valued velocities as per tetrahedron values, and multiplying by the

mass of water in a tetrahedron yields momentum. Our ALE based VOF method

updates the velocity and the amount of water in each tetrahedron on a new mesh

given values on an old mesh.

First, for each tetrahedron, we trace its nodes backwards in time using its vector

valued velocity multiplied by ∆t. As shown in Figure 3.5, this rigidly translates the
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Figure 3.5: A backtraced triangle shown in red uses each of its 10 quadrature point
samples to transport water from the old mesh to the new one. Here, we render both
the old and the new mesh in the same location assuming that the KDSM is not moving
for simplicity of depiction. Each red dot point sample would attempt to remove 1/10
of the area of the red triangle from the specific yellow triangle that it is interior to.

tetrahedron. Alternatively, one could instead compute per node velocities, but we

have found this unnecessary. If a backtraced node collides with a solid surface, it is

clamped to that location. Thus, the backtraced tetrahedron does not deform unless

it hits a solid surface. The resulting backtraced tetrahedron (shown in red in Figure

3.5) is used to collect water from the old mesh in order to deposit it on the new mesh.

Instead of performing the usual complex geometric intersections between backtraced

tetrahedra and the old mesh, we take a simpler approach using a number of quadrature

formula point samples (again from [107]). Each point sample (shown as a red dot

in Figure 3.5) attempts to transport a certain amount of water from the old mesh

tetrahedron it lies within (shown in yellow in Figure 3.5) to the original tetrahedron

on the new mesh (shown in green in Figure 3.5). This potential amount of transported

water is calculated as the volume of the backtraced tetrahedron divided by its number

of point samples. Both water volume and associated momentum are transported. If

a point sample falls outside the KDSM, we compute the amount and momentum of

water to transport using interpolation from the background Eulerian grid. Note that

this water is not removed from the background grid, since the background grid is
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treated in an Eulerian fashion and updated properly via the coupling proposed in

Section 3.4.

The aforementioned advection might attempt to transport more water out of a

tetrahedron on the old mesh than that tetrahedron contains. This could occur because

of size differences between tetrahedra or because multiple point samples from separate

tetrahedra of the new mesh request water from the same tetrahedron on the old mesh.

Thus, in a second step, we visit every tetrahedron on the old mesh and scale down

the amount of water each point sample removes in order to match the total volume

of water in this old mesh tetrahedron as in [57].

In a third step, we identify any tetrahedra on the old mesh that may have excess

water, which was not transported to the new mesh, and forward advect this water to

the new mesh similar to [57], [58], [55]. However, our method can be much simpler

because we track the exact volume of water with our VOF method, and therefore do

not mind overfilling tetrahedra because they are drained to their appropriate volume

during the volume conservation step (see Section 3.3.3). For each tetrahedron on the

old mesh that requires forward advection, we use that tetrahedron’s velocity to advect

its nodes forward in time (in the opposite direction of Figure 3.5) and use its point

samples to locate which tetrahedra in the new mesh will receive its water. Similar

to backward advection, we clamp nodes that collide with solids, use the number

of point samples and the original tetrahedron volume to decide on the fraction of

water deposited in each target tetrahedron, and utilize special treatment for any

point sample that leaves the KDSM and lands on the background Eulerian grid. In

particular, we find particle creation to be quite useful for transporting water off of

the KDSM (see Section 3.4.1).

3.3.3 Volume Conservation

Our volume conservation method is used to enforce incompressibility on the new mesh

using our precomputed rank. The method consists of three parts: smear, pushout,

and velocity correction. Pushout transports excess water and associated momentum

outward from the creature’s skin mesh using rank motivated by [44]. However, this
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Figure 3.6: The triangles cut by the green solid surface region would be assigned
rank 0, their node neighbors shown in red would be rank 1, and their node neighbors
shown in yellow would be rank 2. The arrow shows how a rank 1 triangle needs to
look non-locally in order to find a rank 2 triangle that it can deposit excess water
into.

ignores the fact that the fluid can rotate and move laterally, so we first apply what

we refer to as a smearing step to account for this behavior. Both the smear and the

pushout step transport the volume and associated momentum together. Finally, ve-

locity correction is used to apply boundary conditions on the water from the creature.

We refer to tetrahedra as oversaturated when they contain more water than their

volume should allow. The smearing step loops over oversaturated tetrahedra, except

those on the boundary of the KDSM, and distributes the excess fluid equally to face

neighbors. The boundary tetrahedra are taken care of in the pushout phase.

For pushout, we iterate over oversaturated tetrahedra in order from the lowest

rank to the highest starting with tetrahedra of rank 0 which intersect the creature’s

skin mesh. For each oversaturated tetrahedron, we distribute as much excess fluid

as possible equally to its face neighbors that are not yet fully saturated. If there is

still excess fluid after every neighbor is saturated, it is distributed equally to all face

neighbors with strictly higher ranks. Note that it is possible to have a tetrahedron

without any valid neighbors to distribute water to, since the creature skin mesh can

have narrow space between solid surfaces as illustrated in Figure 3.6. To handle this

case, we preprocess the neighbor information using breadth first search to look for

non-local neighbors with higher ranks to properly transport excess water to. Although
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Figure 3.7: Our ALE based VOF method provides robust adhesion control to produce
various effects. All four of these examples are obtained by merely varying adhesion
effects.
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not trivial, this can be done in the preprocessing step after determining rank. For

boundary tetrahedra, we transfer excess fluid to the background Eulerian grid for

particles as discussed in Section 3.4 and 3.4.1, respectively.

Finally, velocity correction is used to apply boundary conditions on the fluid from

the creature. We assign a Boolean flag per tetrahedron indicating whether its fluid

velocity needs to be corrected, and initialize all flags to false. Then, we iterate over

all cut cell tetrahedra with water and set flags to true. Subsequently, we loop over the

tetrahedra in the same order as in the pushout phase, clamping the normal component

of the fluid velocity to be the precomputed object normal velocity when the flag is set

to true and the normal component of velocity is smaller than the precomputed object

normal velocity. Higher rank tetrahedra have their Boolean flag set to be true when

they have a lower rank face neighbor which is fully saturated that required clamping.

This limits the enforcement of boundary conditions to those tetrahedra exposed to

the creature surface by a column of water. Although this removes circulation on the

KDSM, the circulation is restored from the background Eulerian grid during coupling

as discussed in Section 3.4.

This approach is not a standard projection scheme, but still enforces a divergence

free condition thereby enforcing incompressiblity. One other notable approach that

is not an advection-projection scheme is [106]. To elaborate, fluid simulated using

the Navier-Stokes equations is assumed to obey the conservation of mass equation

∂ρ/∂t + ∇ · (ρu) = 0 (i.e. no fluid is created or destroyed). Here, u is the fluid

velocity, t is time, and ρ is the fluid density. By the product rule, this is equivalent to

∂ρ/∂t+ρ∇·u+u·∇ρ = 0. Using this equation, it can be seen that setting ∇·u = 0 is

equivalent to setting ∂ρ/∂t+u · ∇ρ = 0. Either condition implies the other–they are

equivalent from the conservation of mass. Setting ρ = m/V and using the product

rule gives (1/V )(∂m/∂t)− (m/V 2)(∂V/∂t)+u · ((1/V )∇m− (m/V 2)∇V ) = 0, which

can be regrouped as (1/V )(∂m/∂t + u · ∇m) − (m/V 2)(∂V/∂t + u · ∇V ) = 0. The

first term (1/V )(∂m/∂t + u · ∇m) must equal zero since mass is conserved along

streamlines. This means ∂V/∂t + u · ∇V must also equal zero, and taking this with

the divergence free condition∇·u = 0 yields ∂V/∂t+∇·(uV ) = 0, i.e. conservation of

volume. Thus, conserving volume is equivalent to enforcing a divergence-free velocity
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Figure 3.8: A whale breaches out of the water. (Top Row) Visualization of the
Eulerian water. (Second Row) VOF tetrahedra water is rendered in pink. (Third
Row) Particles are shown in yellow. (Fourth Row) Final rendering.
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field.

With regard to maintaining the incompressibility of a simulated fluid, we note

that a standard projection scheme such as the classic method introduced by [29] is

just one proposed algorithm for this task. In fact, Chorin advocated at least two

distinct schemes [28], though the advection-projection procedure became most popu-

lar. Chorin-style projection claims that one can advect a fluid state ad-hoc off of the

manifold of all incompressible fluid fields and then correct the ensuing error by pro-

jecting back onto that manifold. However, these projection-style schemes are known

to be brittle (e.g. they require small time steps and do not even always converge

under temporal refinement), and they are well-known to be unable to capture impor-

tant physics of fluids (such as viscosity, due to its parabolic nature). Thus, solving

a pressure Poisson equation to enforce a divergence-free velocity field is not the ulti-

mate, and certainly not the only, numerical scheme to simulate incompressible flow.

Our technique, which indeed differs from a pressure projection, is able to successfully

and robustly conserve volume, which as shown above implies the standard incom-

pressibility condition. Hence our volume conservation method maintains a faithful

relationship with the underlying fluid principles and equations. Moreover, at a high

level, we remark that even the Navier-Stokes equations quickly fail to be a physically

accurate model when considering real-world flow problems i.e. turbulence; however,

such approximations are heavily relied upon in computer graphics due to their com-

putational amenability and their ability to produce visually plausible results.

In order to evaluate our method compared to other approaches and to explore

possible extensions, we implemented a standard Poisson solver by assigning pres-

sures on nodes similar to [8]. This implementation solves the inviscid, incompressible

Navier-Stokes equations, ∂u/∂t = −(u · ∇)u − ∇p/ρ + f while satisfying ∇ · u = 0

to enforce the divergence free condition for the velocity field without any advanced

modifications (p is pressure, f is external forces). We ran two different flavors of

this alternative; one is to completely replace our volume conservation scheme with

the standard Poisson solver ignoring the volume conservation entirely within the pro-

jection, and the other is to replace only the velocity correction while keeping smear

and pushout to conserve volume. Note that the smear and pushout steps transport
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fluid with its momentum, so oversaturated fluid velocity propagates to its neighbors.

Thus, the second version spreads water outward more than the first version. We ran

all implementations on the KDSM with the same setup, and the results are shown

in Figure 3.9. In Figure 3.9, we found that the right column is more desirable than

the left because it conserves volume, and is faster and more robust than the middle

column since we do not have to solve a linear system.

3.3.4 Adhesion

We allow an artist to paint adhesion coefficients α and force directions ~d on the

triangulated surface mesh of the creature, and then we rasterize this information to

the KDSM setting adhesion quantities in rank 0 tetrahedra. We propagate adhesion

quantities to face neighbors (or non-local neighbors) of strictly higher rank tetrahedra

by averaging the adhesion quantities from lower rank neighbors for which adhesion

had already been specified. We apply an adhesion force α~d when a tetrahedron is

within a prescribed distance φa from the creature’s surface with linear falloff, i.e.

α(φa − φ)/φa
~d where φ is the distance from the creature’s surface (similar to [109]).

Figure 3.7 illustrates some of the many interesting visual effects obtainable by

varying adhesion parameters. Notably, it is the robust volume conservation of our

VOF method and the adaptivity of the KDSM that allows for such interesting effects.

We attempted similar simulations using a standard Eulerian method and mostly

achieved disturbing volume loss. The top row shows how increasing adhesion (from

left to right) makes the water to stick to the ball and flow around to the bottom

surface before separating. The bottom left image was created with vectors ~d pointing

outwards from the ball at various locations to produce thickened streams. In contrast,

the bottom right figure shows how the vectors ~d can be used to direct water away

from parts of the ball’s surface, drying it out.
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Figure 3.9: (Left Column) Our VOF method with a naive projection implementation
which does not conserve volume. (Middle Column) Our VOF method with smear
and pushout while replacing our velocity correction step with a standard Poisson
solver. (Right Column) Our VOF method with proposed smear, pushout, and velocity
correction steps. The middle and right columns conserve volume.
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3.4 Partitioned Coupling

We utilize three different representations for water: besides the VOF representation on

the KDSM, we also use both free particles and velocities on the background Eulerian

Cartesian grid as is typical for the standard PLS method (see e.g. [36]). See Figure 3.8.

Our partitioned coupling method consists of four major steps. In the first step, each of

our three representations (VOF tetrahedra, particles, and Eulerian Cartesian grid) are

advected forward in time. The method of Section 3.3.2 is used for the VOF tetrahedra,

while the standard PLS method is used to advect the Eulerian grid velocities and to

move the particles. In a second step, momentum is transferred between the three

representations in order to maximize the visual efficacy of the results. Then, external

forces are independently added to each representation, before projecting the velocity

into a divergence free state acceptable to all three representations. The steps are

summarized below:

1. Advection (each stage is independent)

(a) VOF advection (Section 3.3.2)

(b) Particle advection

(c) Eulerian advection

2. Momentum transfer

(a) Transfer momentum from VOF to Eulerian (optional)

(b) Transfer momentum from Eulerian to VOF

(c) VOF particle reincorporation

3. Add external forces (each stage is independent)

(a) VOF external forces

(b) Particle external forces

(c) Eulerian external forces
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4. Volume conservation

(a) VOF volume conservation (Section 3.3.3)

(b) Eulerian projection

i. Eulerian particle reincorporation

ii. Projection

(c) Transfer momentum from Eulerian to VOF

Both the particles and the VOF tetrahedra carry accurate Lagrangian momentum

information, as compared to the typically more smeared out velocities obtained using

semi-Lagrangian advection (see e.g. [88]) on the Eulerian grid. Note that we allow

VOF tetrahedra to overlap with the Eulerian water. Thus, we allow for the option to

first transfer some momentum from the VOF tetrahedra to the Eulerian grid. Typ-

ically, this increases the turbulence near the boundaries of a moving creature. This

is accomplished by iterating over tetrahedra with water and averaging their momen-

tum with the values on the background Eulerian grid using an artist controllable

multiplier. The result is used to overwrite the value on the Eulerian grid.

Next, the velocities of the Eulerian grid are used to overwrite the momentum value

of any tetrahedron which has all four of its nodes inside the water surface representa-

tion of the Eulerian grid. The tetrahedron’s volume is also set to be fully saturated

with water. This overwrite operation does not use averaging since the background

Eulerian grid has a full-fledged pressure solver that tracks velocities more accurately

preserving various effects such as the circulation (discussed in Section 3.3.3). Im-

portantly, cut cell tetrahedra are not overwritten allowing them to more accurately

track volume and momentum close to the boundary of the creature. Higher ranks of

tetrahedra could also be allowed to preserve their information if desired, although we

did not experiment with this option.

Finally, any particle that lies within a VOF tetrahedron that contains water is

deleted, and its volume and momentum are added to that tetrahedron. This allows

particles to freely move through the region of space occupied by the KDSM only

being reincorporated into the VOF representation when they impact water regions as

defined by the VOF tetrahedra.
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Figure 3.10: Top row compares the particle positions obtained with uniform versus
jittered sampling emphasizing how well our eyes capture structured information (even
when we do not want them to). Bottom row compares the two approaches for an
actual simulation.
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Figure 3.11: Our anisotropic porosity model is implemented to influence the VOF
method on the KDSM accounting for both limited volume fraction and drag/adhesion
yielding visually compelling results.

The volume conservation step starts out with the method proposed in Section 3.3.3,

i.e. smear, pushout, and velocity correction, in order to create an adequate velocity

for the VOF tetrahedra on the KDSM. Then, particles are reincorporated into the

background Eulerian grid as Eulerian water when appropriate applying a local mo-

mentum force, altering the level set, and adding an expansion force similar to [62].

Following the standard PLS projection scheme, the results of the pressure solve are

subsequently added to the Cartesian grid velocity in order to obtain a divergence

free field. As a final step, the divergence free Eulerian grid velocities are used to

overwrite the momentum in any tetrahedron that has all four of its nodes interior to

the Eulerian grid water representation.
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Figure 3.12: (Left) Whale breaching with the PLS method on high resolution grid.
The whale pulls very little water along with it. (Middle) FLIP method, which also
produces similar amount of sprays. (Right) Our method pulls more water into the
air with the whale, producing interesting effects such as sheets and sprays.
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3.4.1 Particle Generation

The automatic generation of particles in visually compelling locations by hybrid parti-

cle level set methods has been one of their strengths even predating the PLS method,

see [42]. Thus, we devise a method similar in spirit for our ALE based VOF method

on the KDSM. As discussed in Section 3.3.2, advection might dictate that water

moves off of the KDSM. This occurs when part of a forward advected tetrahedron lies

outside of the KDSM. This is detected by checking whether or not the point samples

of the tetrahedron lie outside of the KDSM. Each point sample had already been

assigned a certain amount of water to transport, so we use that water’s volume and

momentum to create a particle with appropriate radius and velocity. Note that we

use a standard volume equation for a sphere, V = 4/3πr3, to get radius. Since a

straightforward approach leads to noticeable aliasing, we jitter the particle locations

by a small amount–we used a fraction ranging from .1 to 1 multiplied by maximum

edge length of a tetrahedron for our jitter magnitudes (see Figure 3.10). As discussed

in Section 3.3.3, tetrahedra on the exterior boundary of the KDSM may contain ex-

cess water that needs to be transported off of the KDSM. In this scenario, there is

no natural advection direction. Thus, we move the particles across the exterior face

of the tetrahedron while also applying appropriate jittering. Note that when water

leaves the KDSM, it always goes through particle phase before rejoining the level set.

3.4.2 Rendering

As is the case for many of the state-of-the-art Lagrangian methods, rendering smooth

surfaces is quite difficult. Many authors have proposed various strategies, such as

applying smoothing kernel on implicit surfaces as in [14], [110], [2], [87], [73], [99],

[86], [74], [13], [69], explicitly tracking fluid surfaces as in [20], [19], and polygonalizing

fluid surfaces as in [3], [5], [4], [102]. Since most of this research has been focused

on rendering particles as opposed to triangles, we do not use a marching tetrahedra

approach as in [32], [68] to render our VOF representation.

Instead, we propose a novel method of reconstructing water surface by running

an advection-only PLS method while incorporating the VOF tetrahedra water and
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Figure 3.13: A bear walks out of a pool onto land, still carrying and dripping a large
amount of water from its fur. Our anisotropic porosity model accounts for the correct
volume fraction of water in the fur and uses adhesion to pull that water out of the
pool with the bear, subsequently slowing dripping the water out of the fur. This
example emphasizes the efficacy of the adaptivity of the KDSM as well as the ability
to preserve volume and avoid disappearing water with our VOF method.

the PLS water from the simulation in order to achieve a smooth, temporally coherent

surface with high level of detail. We allocate a refined Cartesian grid in order to

reconstruct a new water surface, i.e. 2 to 4 times higher than simulation grid for our

examples, and import the initial simulation data such as the PLS Cartesian grid and

the KDSM. For each frame of our reconstruction scheme, we run a PLS advection,

which advects the new water data, then transfer the next water information from the

simulation to the refined grid. We also read the KDSM data and the VOF tetrahedra

water data from the simulation, seeding negative particles to our recontruction grid

along with VOF velocities. We average particle positions with a threshold similar to

[104] and attract the particles that are near the level set of the simulation representing

the water surface towards that level set in order to flatten out bumps created by the

cut cell tetrahedra near the boundary of the level set. The number of seeded negative

particles and their radii can be controlled via clamping with min/max value in order

to influence the overall look of the resulting water surface. For instance, when a thick

water surface is desired, one should increase the number or radii of particles that are

seeded, while decreasing it will yield much more under-resolved level sets thereby the
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Figure 3.14: A close-up of the bear example, showing water sticking to fur and splashes
generated from our VOF method.

less surface. Thus, one should increase the number of particles when the surfacing grid

is highly refined otherwise the resulting surface will have many under-resolved regions.

Then, we transfer the Cartesian grid data for water regions and solid boundaries,

thereby potentially overwriting some regions where we modified with the KDSM

data. Note that we add gravity only for the new water data, as simulation water data

contains it already. We also utilized velocity extrapolation and setting boundary

conditions from the PLS method to improve the results. Then, we reconstruct the

surface and reseed to obtain a new level set surface and particles for our water. Finally,

we run a diffusion in level set and smooth the normals for rendering, removing very

high frequency jitters and undesirable bumps (see Figure 3.15). The result is a smooth

and temporally coherent water surface, and we incorporate removed negative particle

directly from the simulation if more sprays are needed. Our surface reconstruction

performance significantly benefits from the absence of the pressure solver.
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Figure 3.15: (Left) Anisotropic smoothing kernel in our ball example. (Right) Our
surface reconstruction method.

3.5 Hair-Water Interaction

We embed hair particles in the KDSM and treat the hair using the KDSM as in

[56] (we also refer the interested reader to [79], [59], [37], [38] for more discussion on

hair-water interaction). Our hair-water approach is volumetric in nature, rasterizing

multitude of hair representation into KDSM as opposed to [37], where they focus

on a reduced model for individual hair strands. As a result, our method handles

hair-water interaction with 540k hairs as opposed to 5k and 30k as given in [79] and

[37], respectively. For each tetrahedron containing hair we precompute the volume

fraction occupied by the hair and reduce the water that this tetrahedron may contain

at saturation by this amount. This gives a very accurate representation of the porosity.

We also compute the average direction of the hair strands in each tetrahedron, so that

we may treat the porosity anisotropically. Essentially, more drag is applied orthogonal

to the average direction of the hair strands. See Figures 3.11, 3.13, 3.14.

3.6 Results and Discussion

We ran our examples on a machine with a 3.06GHz CPU (12 cores) and 96GB RAM.

KDSM generation for the whale and bear examples took 10 minutes per frame, and

each frame is temporally independent so we ran them in parallel. The ball examples

(Figures 3.3 and 3.7) took 1 minute and 2 seconds per frame to run with a 100x100x100
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Eulerian grid, 5.6 million KDSM elements, and .9 million KDSM particles. The

bear pour example (Figure 3.11) took 7 minutes and 3 seconds per frame with a

200x200x400 grid, 8.2 million KDSM elements, and 1.4 million KDSM particles. The

bear walk example (Figure 3.13) took 4.5 minutes per frame with a 100x200x200 grid,

8.2 million KDSM elements, and 1.4 million KDSM particles. The whale example

took 20 minutes per frame with a 200x300x200 grid, 8.5 million KDSM elements, and

1.4 million KDSM particles whereas the PLS method-only example took 29 minutes

per frame using a 350x525x350 grid. We note the visual differences as a comparison

in Figure 3.12 with FLIP method with a 200x300x200 grid, as well as Figure 3.17.

If we run the PLS method for the whale example at an even higher resolution, we

can eventually achieve higher quality results by carrying more water volume with

the whale, but this would require significant time investment. We used Neumann

boundary condition for solid boundaries for PLS method. For all our examples, we

generated 5 to 35 samples per tetrahedron based on the quadrature formula.

There are fundamental limitations of ALE based methods especially regarding

meshing problems, so we implement a couple of simple remedies below to fix the

occasional degeneracy in order to run all of our examples robustly. Note that the

animated creature can move in a way that inverts its elements or prevents volume

preservation of the surrounding space unless the artist is very careful–most of issues

appear near joints and are worsened by linear blend skinning. We only need to iterate

a couple of times in the preprocessing stage to resolve most of these issues, and we

disable any remaining degenerate elements (inverted or collapsed) so that they cannot

participate in the VOF solver. Thus, whenever a sample point falls in degenerate

elements, particles will be formed instead of the located element receiving water.

While one could better prevent element inversion by using FEM or quasistatics, in

practice our simple mass spring model was sufficient. Rarely when we cannot properly

advect or enforce incompressibility during the simulation because a VOF tetrahedron

is completely surrounded by the solid due to an extreme creature deformation, we

simply keep the water in that tetrahedron in order to exactly conserve volume until

the issue is resolved as the surrounding solid opens up.

Our method fully conserves volume in the KDSM, although floating point drift
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Figure 3.16: Volume error for example where a thin stream of water hits a ball (see
top right of Figure 3.3).

causes small volume error throughout the simulation. We measured the volume error

per frame for ball example in top right of Figure 3.3 for 400 frames. The average

volume error per frame was 0.00089%, and the maximum error was 0.00189%.

Occasionally water stacking along boundaries can occur when VOF tetrahedra are

in contact with solids. This is due to our VOF volume conservation step distributing

excess fluid and its momentum to neighboring tetrahedra, and this issue can be re-

solved either by increasing the resolution of the Eulerian grid to allow Eulerian fluid

to contact the solid and using its full-fledged pressure solver as in Section 3.4 or by

using a standard Poisson solver as discussed in Section 3.3.3.

As future work, one could implement a different solver such as [51], [50], or [26]

to simulate fluid in the background grid or in the KDSM, and the adaptivity of

our method will improve the accuracy of chosen method. In order to generalize our

method to a pure FLIP/PIC/APIC variant, given that we already have a solver for

the background Eulerian grid, the data transfer function would need to be rewritten

in order to refer to the KDSM when the particle is inside of the KDSM, and the inter-

polation scheme would need to be modified to use barycentric weights for tetrahedron.

Then, [8] could be used to handle non-advection steps. Thus, FLIP/PIC/APIC vari-

ant can benefit from the dense KDSM mesh instead of using the coarse background
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Eulerian grid when the method transfers data from particles to the KDSM. We em-

phasize the technical insight that the coarse background grid captures a low frequency

fluid surface whereas around the creature with high frequency boundaries we use the

dense KDSM mesh to capture high frequency fluid motion. We chose the PLS method

because it generates a very smooth surface, which is suitable for background motion,

whereas our ALE based VOF method is more geared towards capturing detailed fluid

motion by preserving volume to compensate for the PLS method’s limitation. Addi-

tionally, one can subdivide on-the-fly if adaptive remeshing based on the fluid motion

is desired.

3.7 Conclusions

We proposed a new fluid simulation framework for character-water and hair-water

interaction using our novel volume conserving VOF method based on an adaptive

tetrahedral mesh from the KDSM, which moves with the creature. We prebake the

adaptivity of the ALE mesh, separating the nontrivial remeshing issue from the simu-

lation phase and improving the robustness of our ALE based VOF method; we further

preprocess auxiliary data wherever possible in order to make the simulation efficient

and streamlined. A coarse background Eulerian grid and our fine ALE mesh are two

way coupled using a partitioned approach which is fast, efficient, and straightforward

to implement. We use our volume conserving VOF method only on the KDSM near

Figure 3.17: (Left) FLIP method on our ball example. (Right) Our method.
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the creature while using a standard PLS method on the background Eulerian grid.

We robustly implement interesting effects such as adhesion and anisotropic porosity.

Moreover, we presented a novel water surfacing method to reconstruct the smooth,

temporally coherent water surface. We demonstrated how the coarse background Eu-

lerian grid captures the bulk behavior of the water, while our VOF method captures

detailed water effects near the creature and the particles capture the spray—all of

which make important contributions to the final result.
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Conclusions

This dissertation has presented KDSM as a data structure for hair and water sim-

ulation. The KDSM can deform along with the solid surface due to its Lagrangian

nature while maintaining a consistent topology, as opposed to the grid which is fixed

in space or particles which do not store topological information. It allows us to create

hair-water framework which contributes in the following aspects:

Scalability: We improved the scalability of our framework by (1) precomputing

numerous auxiliary information such as blendshape hair weights, adaptivity, topolog-

ical information, adhesion coefficients, and porosity from a coarse KDSM, (2) using

the layering framework, separating bulk motion and intricate motion of the simula-

tion, and (3) providing a kinematic support for any simulated elements which are

anchored to the KDSM to use weak springs.

Artist Control: We demonstrated KDSM based artist control such as (1) serving

as a guide mesh for artists, (2) controlling the amount of KDSM deformation that

can be applied to simulated elements, (3) containing air volume to let hair particles

drift freely within the KDSM, and (4) producing adaptivity and detailed boundary

conditions for the water simulation.

Flexibility: The KDSM is agnostic to the underlying simulation model, which

allows us to create the flexible framework for both hair and water simulation on top

of the KDSM.

Here are contributions from our hair-water simulation system for hair animation,

61
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robust volume-conserving water simulation, and hair-water interaction based on the

KDSM. First, we demonstrated our novel hair pipeline and hair-water interaction

scheme with the PLS method. Next, we proposed a robust water simulation tech-

nique that preserves volume for character-water interaction, which produces improved

hair-water interaction. Finally, we showed how our framework captures high-quality

hair, water, and hair-water effects while scaling well to millions of hairs and very

large fluid domains, offering powerful artist control, and providing a flexible frame-

work integrating multiple methods. Notably, the KDSM is intrinsically part of the

animation and does not dictate any particular approach to simulation; this feature

allows developers/artists to use their favorite techniques in place of our mass spring

model, the PLS method, and even our VOF method. We mainly benefited from the

technical insight that we can use different models for different scales. For instance,

the finite element method or position based dynamics can be used instead of mass

spring as a constitutive model for kinematic/dynamic skinning, a reduced hair model

can be used instead of mass spring hair in place of our individual hair model, and

PIC/FLIP/APIC can be used instead of the PLS or our VOF method.

We present below areas for extension of this work.

4.1 Rendering

The rendering for hair-water effects proved to be a non-trivial task, due to the sheer

number of elements to render and the various quality issues. We noticed various

post-processing/rendering artifacts (e.g. noise, temporal incoherency, and bumps),

which degrades the overall quality of the final video. For our hair-water interaction

examples, water naturally generates splashes which hides some artifacts with the help

of reflection/refraction, but these were often visible in our debug rendering mode. Our

water reconstruction scheme improves upon the state-of-the-art, but this area still

remains to be explored and improved upon, possibly by extending our reconstruction

scheme.
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4.2 Hair Framework Improvement

The dynamic skinning and blendshape hair can be extended to achieve hair effects

with higher fidelity. For instance, swaying the bear back and forth underwater can

be improved by running more than one copy of the simulated dynamic tetrahedral

mesh. Because of running multiple versions of dynamic skinning with the blendshape

hair, our framework would be able to support more than one type of dynamics for

the bulk and intricate hair motion. Finally, multiple versions of hairs can be blended

as a post-process to achieve various motions of hair.

4.3 Cloth Simulation

Since KDSM preserves inertial effects around the boundaries of an object, it will

benefit cloth simulation. Kinematic skinning can be used to deform cloth based on

the deformation of the character. Dynamic skinning can be used to handle external

forces such as wind or water drag on cloth. A blendshape variant can be applied

to cloth mesh to create or add any wrinkles or deformations based on the change

in character’s pose. When cloth undergoes collisions, a subset of cloth mesh can be

selected and any constitutive model can be applied to the selected triangles while the

remaining cloth mesh is embedded to the KDSM to retain its intended motion. In

conclusion, cloth simulation seems to be a natural direction in which to extend our

framework.

4.4 Smoke Simulation

We have demonstrated water simulation using the KDSM, so smoke simulation will

be a straightforward extension. [39], [40], [55] cover many relevant ALE smoke im-

plementation details, which are relevant here. Most of the second chapter of this

dissertation can be used except the projection stage because smoke is a compressible

fluid phenomenon unlike water which is incompressible.
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4.5 Tree Simulation

Since trees have numerous leaves whose movements are mainly governed by the motion

of branches, our KDSM can be very useful in running tree simulation with millions

of leaves. The low frequency motion of leaves caused by branch movements can be

implemented as in bulk motion, and high frequency leaf motion can be represented

by either precomputed blendshape or simulated individually with a reduced model.

Furthermore, additional wind or water simulation can be coupled with tree simulation

to produce a forest scene with numerous trees interacting with strong wind gusts from

a storm, smoke from wildfire, or waves caused by a tsunami.

4.6 Artist Control for Water Simulation

Currently, our method only supports adhesion force based controls for water simula-

tion with our novel VOF method. Our method provides enough control for water to

robustly implement hair-water interaction via our anisotropic porosity for hairs, but

an arbitrary control without porosity-like quantities could be nontrivial. Integrating

[64] would be a good direction to work in to improve controllability of both our VOF

and PLS solvers per keyframe.

4.7 Real-Time Hair/Water for Games

The kinematic skinning and blendshape hair can be implemented in GPU to achieve

hair effects in real-time for games. Our VOF solver can be weakly enforced (volume

conservation enforced with a few specified bandwidth) in order to improve perfor-

mance. Since character animation for games are precomputed and simply interpo-

lated in real-time, the KDSM can be processed in the same manner and be used to

compute hairs and improve performance of water simulation. NVIDIA HairWorks

implemented an efficient hair/fur model for game characters/creatures such as hu-

mans, wolves, tigers, and monsters, and our pipeline can further improve NVIDIA’s

pipeline to increase the realism of AAA games such as Witcher, Far Cry, Call of Duty,
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and Tomb Raider series.

4.8 Adaptive Mesh for Neural Network

Last, our framework can be useful as a spatially adaptive mesh for machine learn-

ing/deep learning techniques, especially serving as a grid for convolutional neural

network. The KDSM contains inertial effects of a character, and pose based ma-

chine learning techniques can be integrated with our method to learn various effects

around the boundaries based on the pose, and the learned model could be applied

to the tetrahedra of the KDSM mesh (most likely after a few subdivisions) for an

intended effect. The KDSM can be useful in learning deformations of hair, cloth or

skin based on a character’s poses because of the consistent topology aspect of the

KDSM.
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adjoint method. ACM Trans. Graph. (SIGGRAPH Proc.), 23(3):449–456, 2004.

[65] V. Mihalef, D. Metaxas, and M. Sussman. Animation and control of breaking

waves. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput.

Anim., pages 315–324, 2004.

[66] V. Mihalef, B. Unlusu, D. Metaxas, M. Sussman, and M. Hussaini. Physics

based boiling simulation. In SCA ’06: Proc. of the 2006 ACM SIG-

GRAPH/Eurographics Symp. on Comput. Anim., pages 317–324, 2006.

[67] N. Molino, R. Bridson, J. Teran, and R. Fedkiw. A crystalline, red green

strategy for meshing highly deformable objects with tetrahedra. In 12th Int.

Mesh. Roundtable, pages 103–114, 2003.

[68] H. Müller and M. Wehle. Visualization of implicit surfaces using adaptive

tetrahedrizations. 1997.

[69] M. Müller and N. Chentanez. Solid simulation with oriented particles. ACM

TOG, 30(4):92:1–92:10, 2011.



BIBLIOGRAPHY 73

[70] Matthias Müller and Nuttapong Chentanez. Wrinkle meshes. In Proceedings of

the 2010 ACM SIGGRAPH/Eurographics symposium on computer animation,

pages 85–92. Eurographics Association, 2010.

[71] Matthias Müller, Nuttapong Chentanez, Tae-Yong Kim, and Miles Macklin. Air

meshes for robust collision handling. ACM Trans. Graph., 34(4):133:1–133:9,

July 2015.

[72] Matthias Müller, Tae-Yong Kim, and Nuttapong Chentanez. Fast simulation

of inextensible hair and fur. VRIPHYS, 12:39–44, 2012.

[73] K. Museth, M. Clive, and N. B. Zafar. Blobtacular: Surfacing particle systems

in ”pirates of the caribbean 3”. SIGGRAPH Sketches, 2007.

[74] J. Onderik, M. Chladek, and R. Durikovic. Sph with small scale details and

improved surface reconstruction. SCCG, 2011.

[75] Lena Petrovic, Mark Henne, and John Anderson. Volumetric methods for sim-

ulation and rendering of hair. Pixar Anim. Studios, 2(4), 2005.

[76] Eric Plante, Marie-Paule Cani, and Pierre Poulin. Capturing the complexity of

hair motion. Graph. Models, 64(1):40–58, 2002.

[77] W. J. Rider and D. B. Kothe. Reconstructing volume tracking. J. Comput.

Phys., 141:112–152, 1998.

[78] Robert E Rosenblum, Wayne E Carlson, and Edwin Tripp. Simulating the

structure and dynamics of human hair: modelling, rendering and animation. J.

Vis. and Comput. Anim., 2(4):141–148, 1991.

[79] W. Rungjiratananon, Y. Kanamori, and T. Nishita. Wetting effects in hair

simulation. In Comput. Graph. Forum, volume 31, pages 1993–2002. Wiley

Online Library, 2012.

[80] R Sánchez-Banderas, H Barreiro, I Garćıa-Fernández, and M Pérez. Real-time
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