
High Performance Graphics (2012)
C. Dachsbacher, J. Munkberg, and J. Pantaleoni (Editors)

SRDH: Specializing BVH Construction and Traversal Order
Using Representative Shadow Ray Sets

Nicolas Feltman Minjae Lee Kayvon Fatahalian

Carnegie Mellon University

Abstract

We derive the Shadow Ray Distribution Heuristic (SRDH), an accurate cost estimator for shadow ray traversal
through a bounding volume hierarchy (BVH). The SRDH leverages up-front knowledge of the distribution and
intersection results of previously traced shadow rays to construct a shadow-ray-specialized BVH and choose
an associated traversal order policy which together promote early termination by quickly finding occlusions. In
scenes containing large amounts of occlusion, SRDH reduces the number of BVH node traversal steps needed
for shadow computations between 22% and 56% compared to average-case traversal through SAH-constructed
trees. Evaluating the SRDH using a sparse shadow ray set recorded from a 16×16 pixel rendering of the scene
consistently produces BVHs whose traversal cost is within 6% of those built when all shadow rays are available
to the metric at the time of construction. The benefits of the SRDH come at the cost of storing an additional BVH
in memory and a 2.4× increase (on average) in BVH construction time.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing, Visible line/surface algorithms

1. Introduction

In this paper, we use a priori knowledge of a scene’s shadow
ray queries and shadow-casting geometry to reduce the
cost of tracing subsequent shadow rays. Our work is built
on assumptions that are similar to those of Bittner and
Havran [BH09]; we expect that a small representative set
of shadow rays, along with a list of intersections with scene
geometry, is available at the time of acceleration structure
construction. The main contributions of our work include a
cost metric for traversing shadow rays through a bounding
volume hierarchy (BVH) that is based on the available ray
information and a BVH construction algorithm that uses this
metric to simultaneously specialize BVH structure and also
shadow ray traversal order to minimize this cost. That is, we
do not build a high-quality acceleration structure and then
determine an efficient ray traversal order; instead, our algo-
rithm makes both sets of decisions at the same time. The
result is a BVH that contains frequent occluders at shallow
tree depths and a traversal order policy that directs shadow
rays toward these occluders to achieve early termination.

We find that by co-optimizing BVH structure and traversal
order using representative ray data we can reduce by up to

56% shadow ray traversal steps in scenes containing signif-
icant amounts of light occlusion. The approach is effective
even when representative ray sets are sparse. For example,
shadow ray data recorded from a small 16×16 pre-rendering
of the scene is sufficient to achieve traversal cost within 6%
(sometimes nearly identical) of that obtained when all the
shadow rays to be traced are known in advance. Thus the
benefits of ray tracing using the SRDH come at the expense
of a modest increase in BVH construction time (on average
preprocessing takes 2.4 times longer than BVH construction
using the SAH) and increased memory footprint for storing
the additional shadow-ray specialized BVH.

2. Background

High-performance ray tracing systems construct adaptive ac-
celeration structures such as BVHs and K-D trees using the
surface area heuristic (SAH) [GS87]. (We refer the reader
to [WBS07] for a description of employing the SAH dur-
ing BVH construction). SAH-based construction attempts to
minimize expected traversal cost as determined by a cost
metric that assumes rays are distributed uniformly in a scene
and that traversal through the hierarchy does not terminate

c© The Eurographics Association 2012.

N. Feltman, M. Lee, & K. Fatahalian / SRDH: The Shadow Ray Distribution Heuristic

when an occlusion is found. Previous work [Hav01, HM08,
FFD09] has sought to improve the accuracy of the SAH by
modifying it to account for common non-uniform ray dis-
tributions. Rather than model ray distribution analytically,
Bittner and Havran [BH09] use ray data logged from previ-
ous frames (or sparsely sampled from the current frame) in
an attempt to obtain an accurate cost metric for the scene.
Although the resulting trees yielded only modest improve-
ments in traversal performance for radiance rays, we take
inspiration from Bittner and Havran here.

We hypothesize that access to full ray information dur-
ing BVH construction can yield more substantial benefits
for shadow rays, rather than radiance rays (Ize and Hansen
make similar comments [IH11]). Shadow rays, unlike radi-
ance rays, only require determination if any intersection ex-
ists along a ray (rather than the first intersection). As a result,
traversal may terminate when the first intersection is found.
Thus, it is advantageous in situations of high occlusion for
rays to traverse through the scene hierarchy in a manner that
quickly encounters the occluders.

However, since the location of occluders is determined
by both the geometric configuration of the scene and the
shadow rays cast, it is not obvious how to traverse through a
BVH in the direction of the most likely hit [Smi98, BH10].
Ize and Hansen [IH11] measure the performance of a num-
ber of traversal schemes (e.g., front-to-back, back-to-front,
random) and report that the preferred traversal order varies
depending on scene configuration.

Observing that dense regions of the scene are more likely
to contain occluders, Ize and Hansen [IH11] propose a cost
metric (RTSAH) that models the cost of shadow ray traver-
sal through a existing SAH-built BVH. RTSAH uses geo-
metric density within the volume of a subtree as an estimate
of likelihood of ray hit. During traversal, rays always pro-
ceed in the direction of the minimum cost subtree, often (but
not always, as we show in Section 4.1) leading to improved
traversal performance.

Our work exploits actual ray data, rather than assump-
tions about the scene, to guide traversal decisions. Like Ize
and Hansen, we derive a cost model specific to shadow ray
traversal. However, our metric uses actual intersection data
from a representative shadow ray set in place of geometric
density estimates and also allows traversal policy to change
at each node in a BVH. We then use this metric to specialize
both BVH structure and traversal order for shadow rays. (We
produce a BVH optimized for shadow ray traversal.)

Alternative acceleration techniques, such as caching fre-
quent occluders [HG86] or employing low-resolution proxy
geometry [DKH09,LBBS08] are also valid optimizations for
shadow computations in ray tracing systems. We view these
techniques as complementary to accelerating the depth-first
traversal cost of shadow rays.

3. Shadow Ray Cost Metric and Cost Heuristic

In this section we describe a general algorithm for shadow
ray traversal that encompasses the depth-first schemes de-
scribed in Section 2. We derive a cost model for traversal
that is evaluated using data from a representative shadow ray
set, and then use the cost model as a basis for a cost heuristic
used during greedy, top-down BVH construction.

3.1. Kernel-Guided Traversal

In depth-first traversal methods, the goal of a traversal order
scheme is to guide each shadow ray to its shallowest oc-
clusion in order to terminate the trace routine as quickly as
possible. Thinking about traversal as a series of left/right de-
cisions at each branch, we encapsulate this decision process
as a traversal-order kernel function. Given a BVH node N
with associated kernel κN , κN (r) represents the probability
that the ray r will traverse to the left child first after passing
the bounding box test of N . (The motivation for adopting
a probabilistic definition will become clear in Section 3.2.)
As it may be advantageous to adopt traversal-order decision
logic specialized for different regions of a scene, we permit
assignment of a unique kernel to each node in the BVH. Ex-
ample traversal-order kernels include:

• Constant: Returns the constant p. For example, left-child-
first traversal associates each node with the constant ker-
nel κ(r) = 1. RTSAH [IH11] uses a bottom-up preprocess
on a SAH tree to assign one of two constant kernels (p=0
or 1) to each node based on estimated child traversal costs.

• Front-to-back: Returns 1 if the left child center is closer
to the origin of r, or 0 otherwise

• Back-to-front: Returns 1 if the left child center is farther
from the origin of r, or 0 otherwise

The method anyhit_traverse given below performs or-
dered depth-first shadow ray traversal of BVH N in accor-
dance with traversal kernels defined at each tree node. All
traversal schemes described in Section 2 are special cases of
anyhit_traverse for various kernel choices.

define anyhit_traverse(N,r):
if r misses bbox(N):
return MISS

if N is a leaf:
return intersect prims in N

p = κN (r)
if rand() < p:
first = left_child(N)
second = right_child(N)

else:
first = right_child(N)
second = left_child(N)

if anyhit_traverse(first, r) == HIT:
return HIT

return anyhit_traverse(second, r)

c© The Eurographics Association 2012.

N. Feltman, M. Lee, & K. Fatahalian / SRDH: The Shadow Ray Distribution Heuristic

Note that in anyhit_traverse ray-node bounding box
tests are performed only upon traversing to a child node
(rather than as part of visiting its parent branch, as is com-
mon when tracing radiance rays). A shadow ray occluded
by geometry in the first sub-tree need not be tested with
the bounds of the second. This key optimization of shadow
ray traversal is not possible for radiance rays, which require
identification of the closest ray-scene intersection.

3.2. Shadow Ray Traversal Cost Metric

We now develop a cost model for anyhit_traverse. To
facilitate derivation, we introduce four basic {0,1}-valued
functions, defined for BVH nodeN and ray r:

M(N ,r) “Miss” r misses the bbox ofN
I(N ,r) “Pierce” r intersects the bbox ofN

H(N ,r) “Hit”
r intersects a primitive
in the subtree ofN

F(N ,r) “Faux-Hit”
r intersects the bbox ofN ,
but misses all primitives

Note the identity:

H(N ,r)+F(N ,r)+M(N ,r) = I(N ,r)+M(N ,r) = 1

Letting cb and cp be the costs of bounding box
and primitive intersection tests, the cost of performing
anyhit_traverse(N ,r), for leaf nodeN is:

C(N ,r) = cb + I(N ,r)cp

That is, we always test r with the bounding box of the leaf
node. If the ray intersects the box we also test the primitive.
Now let ck be the cost of a kernel execution, and N be a
branch node with left child A and right child B. The cost
when descending to A first is:

Afirst = cb + I(N ,r)(ck +C(A,r)+(1−H(A,r))C(B,r))

That is, if r pierces the bounding box of N , traversal pro-
ceeds toA, and then to B, provided no primitive intersection
was found in A. Symmetrically, the cost when traversing B
first is:

Bfirst = cb + I(N ,r)(ck +C(B,r)+(1−H(B,r))C(A,r))

The expected cost of anyhit_traverse(N ,r) is given
by combining Afirst and Bfirst according to the probability
κN (r). (We write κN (r)≡ 1−κN (r) for convenience):

C(N ,r) = (κN (r))Afirst +(κN (r))Bfirst

= cb + I(N ,r)(ck +C′(N ,r))

where,

C′(N ,r) =(1−κN (r)H(B,r))C(A,r)
+(1−κN (r)H(A,r))C(B,r)

Observe that C(N ,r) gives the expected cost over the left-
first/right-first probability distribution defined by κN (r) for
the specific ray r. The expected cost of a set of rays R is
simply the sum of the cost for each ray:

C(N ,R) = ∑
r∈R

C(N ,r)

And for the set R′ ⊆ R that pierces the bounds ofN :

C′(N ,R′) = ∑
r′∈R′

C′(N ,r′)

3.3. Shadow Ray Distribution Heuristic (SRDH)

Consider the construction of BVH branch N from a collec-
tion of primitives P and a set of rays R which pierce the
bounding box of P. Our goal is to estimate C′(R,N) for the
various possible constructions ofN . For instance, if we par-
tition P into P1 and P2, and use the kernel κ, we seek

SRDH(P1,P2,κ,R)≈C′([NP0,NP1,κ],R)

where NP0 and NP1 are the subtrees that will be built out
of P0 and P1. Of course, in a top-down build process these
subtrees have yet to be built, so we approximate the sub-
costs as being linear in the number of contained primitives,
analogously to [WH06]:

SRDH(P1,P2,κ,R) = ∑
r∈R

(1−κ(r)H(P2,r))I(P1,r)|L1|

+(1−κ(r)H(P1,r))I(P2,r)|P2|

We refer to the cost estimator above as the Shadow Ray Dis-
tribution Heuristic (SRDH). Note that the H function above
is an extension of the H function from section 3.2. In this
context, it indicates whether there is any intersections be-
tween a ray and set of primitives.

3.4. Building BVHs Using the SRDH

We have developed a greedy, top-down BVH build algorithm
based on the SRDH. Pseudocode for the algorithm is given
in the function SRDHBuild below. SRDHBuild accepts as
input both a set of primitives P and a set of rays R. The set
R only needs to be representative of the actual rays to be
traced and can be quite sparse (see Section 4.2). In order to
calculate the general H function, all intersections between
rays in R and primitives in P need to be known at the time of
construction, not just one per ray.

In each build step, the algorithm minimizes the SRDH by
searching over both a candidate set of partitions (parti-
tions, e.g., axis-aligned planes) and traversal-order ker-
nels (kernels). It then determines which rays would reach
the child nodes given the selected traversal scheme, and pro-
duces filtered ray sets for the subsequent child node builds.
In pseudocode, hatted variables denote the best values found
so far.

c© The Eurographics Association 2012.

N. Feltman, M. Lee, & K. Fatahalian / SRDH: The Shadow Ray Distribution Heuristic

define SRDHBuild(P,R):
if |P|< leaf_threshold:
return LeafNode(P)

/* select partition, kernel that minimizes SRDH */
minCost = ∞
foreach (P1,P2) ∈ partitions(P):
foreach κ ∈ kernels(P1,P2):

/* revert to SAH when there are no rays */
if R is empty:
cost = SAH(P1,P2)

else:
cost = SRDH(P1,P2,κ,R)

if cost < minCost:
minCost = cost
(P̂1,P̂2,κ̂) = (P1,P2,κ)

/* compute ray sets reaching child nodes */
R1 = {r ∈ R : κ̂(r)H(P̂2,r) 6= 1}
R2 = {r ∈ R : κ̂(r)H(P̂1,r) 6= 1}

/* return BVH branch */
return [SRDHBuild(P̂1,R1),

SRDHBuild(P̂2,R2),κ̂]

Although the kernel functions of our cost model can re-
turn any probability, the implementation above is restricted
to only those kernels with the range {0,1}. Supporting unre-
stricted kernels would increase the complexity and runtime
cost of SRDHBuild by requiring that it track the probabil-
ities that each ray has traversed to the current subtree and
account for these probabilities within the SRDH. When R
contains no occluded rays, this restriction no longer applies
(indeed the choice of κ becomes irrelevant to the cost), and
so any kernel can be assigned. More strongly, when R is
empty, we revert to standard SAH entirely. Although [BH09]
employed blended heuristic under sparsity, we find that an
abrupt transition is sufficient. In both of these cases, we place
a uniform constant (p = 0.5) kernel at the branch being built.

Because the H function is sparse, it can be represented
efficiently as a list per ray of all primitives intersected by
that ray. Our implementation performs a low-resolution pre-
rendering of the scene to quickly generate a representative
shadow ray set R and also compute the associated intersec-
tion lists. A SAH-constructed BVH (already needed for ra-
diance rays) expedites the precalculation.

4. Evaluation

We evaluate the SRDH using the five scenes shown in Fig-
ure 1. BEDROOM and FAIRY contain objects that occlude
large regions of the scene, and thus present opportunities
for significant optimization of BVH construction and traver-
sal. MADSCI and ARCADE feature area light sources and
also generate a high percentage of occluded rays. In contrast
to the other four scenes, the visible geometry in SPONZA

is primarily unshadowed, so SPONZA serves as a test case
for low amounts of occlusion. In all experiments, scenes are
rendered at 1024×1024 resolution. One level of diffuse in-

BEDROOMMADSCI

ARCADESPONZA

FAIRY
11.3 M rays, 80% occl.

14 area lights
10.8 M rays, 93% occl.

11 point lights
1.5 M rays, 56% occl.

1 point light

1.7 M rays, 14% occl.
1 point light

3.2 M rays, 38% occl.
2 area lights

Figure 1: Scenes used to evaluate the efficiency of BVHs
built using the SRDH. Ray counts describe shadow rays only.

terreflection is computed during rendering so shadow rays
originate from both surfaces visible to the camera and also
from surfaces reached after one diffuse bounce. The diffuse
bounce results in a wider distribution of shadow ray origins
in the scene and serves to create a more challenging work-
load for SRDH optimization.

We compare the cost of computing shadow ray intersec-
tions using SRDH determined BVH topology and traversal
with that of four traversal policies through SAH-constructed
BVHs: random (κ(r) = .5), front-to-back, back-to-front, and
RTSAH. Both the SRDH and SAH trees contain exactly one
primitive per leaf node, so throughout this evaluation, we use
ray-bounding box intersection counts as a simple, machine-
independent proxy for shadow ray tracing cost. (Counting
ray-triangle intersection tests yields similar results.) All ex-
periments utilize single-ray traversal (no packets).

4.1. SRDH Cost Comparison

Figure 2 compares the number of shadow ray-bounding box
intersections performed by each of the five methods for each
scene (lower values indicate lower cost). All counts are nor-
malized to that of randomized traversal. In these experi-
ments, the SRDH is evaluated using a ray set containing all
shadow rays. Thus the red bars in the figure correspond to a
“best case” scenario where complete information about the
shadow rays (distribution and intersection results) is avail-
able at the time of construction.

SRDH yields the lowest total traversal cost for all scenes.
In BEDROOM, where light enters through the window blinds
on the left, SRDH decreases traversal cost by 56% compared
to randomized traversal (41% and 44% compared to back-
to-front and RTSAH traversal). Similar behavior occurs in

c© The Eurographics Association 2012.

N. Feltman, M. Lee, & K. Fatahalian / SRDH: The Shadow Ray Distribution Heuristic

BEDROOMMADSCI ARCADESPONZAFAIRY

1.0

.5

0

1. SAH build, random traversal (baseline)
2. SAH build, front-to-back traversal
3. SAH build, back-to-front traversal

4. SAH build, RTSAH traversal
5. SRDH build + traversal

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

B
B

ox
 In

te
rs

ec
tio

n
Te

st
s

(r
el

at
iv

e
to

 S
A

H
 b

ui
ld

, r
an

do
m

 tr
av

er
sa

l) Shadow Ray Traversal: BBox Intersection Tests

unoccluded rays

occluded rays
(on path to hit)

occluded rays
(off path to hit)

Figure 2: Comparison of the number of ray-bounding box intersection tests performed during shadow ray traversal by five
ray-tracing configurations (counts are normalized to random traversal order). SRDH generates BVHs and chooses a traversal
order that results in the lowest total traversal cost for all scenes.

907
1607

355K
178K

90K
4K

55K

501
11

159
979

35K
979

706K

14K
2K

1495

(B) Frequent Occluder
Geometry (red)

(A) Shadow Rays (C) SAH BVH (D) SRDH BVH
(w/ traversal order)

Figure 3: Comparison of BVHs constructed for BEDROOM using the SAH and SRDH heuristics. (A) visualization of shadow
rays in the scene. The view is chosen to aid visualization. It is not the camera position used in BEDROOM. (B) A large percentage
of shadow rays intersect the middle set of blinds, highlighted in red. (C and D) BVHs built using the SAH and SRDH heuristics.
Numbers indicate subtree node counts. Subtrees containing blinds geometry are marked in red. The SRDH tree pushes the
highlighted blinds geometry towards the root and selects constant traversal kernels (red arrows) that guide rays to this subtree.

FAIRY since the tree trunk lies between visible geometry
and the light source. In BEDROOM, the SRDH identifies the
blinds as the primary occluder in the scene. It produces a
BVH, shown in Figure 3-D, that contains the blinds geome-
try in a subtree rooted at shallow depth (depth 3) and selects
traversal order kernels that direct shadow rays to this region
of the tree (red arrows). In contrast, SAH locates the blinds
geometry deeper in the BVH and separates it into two sub-
trees (Figure 3-C). In the SAH-constructed BVH a major-
ity of the blinds geometry is contained in subtrees rooted at
depths 7 and 8.

To explain advantages of the SRDH tree quantitatively, we
decompose the cost of ray traversal into three disjoint cate-
gories illustrated by the three segments within each vertical
bar in Figure 2. The top two segments together comprise cost
incurred during traversal of occluded shadow rays. The top-
most segment of each bar corresponds to the cost of traversal

along the path to the eventual hit, whereas the middle seg-
ment represents the cost due to traversing to nodes which do
not lead to a hit (faux-hits). In comparison to other meth-
ods, SRDH shrinks the former component by placing fre-
quent occluders near the root of the BVH. It shrinks the latter
component by guiding traversal towards occluders and also
keeping frequent occluders in close proximity in the tree.

The bottom section of each bar in Figure 2 gives the
cost of traversing unoccluded rays. This cost is identical for
all SAH-based schemes since early termination is not pos-
sible and all schemes visit the same tree nodes (traversal
order does not impact the cost of unoccluded rays). The
SRDH reduces unoccluded ray cost by 19% and 24% in
the SPONZA and ARCADE scenes because it uses the actual
distribution of rays to build a tree with higher culling effi-
cacy (fewer faux-hits). The cost of tracing unoccluded rays
dominates the overall cost of SPONZA (most rays are not

c© The Eurographics Association 2012.

N. Feltman, M. Lee, & K. Fatahalian / SRDH: The Shadow Ray Distribution Heuristic

MADSCIBEDROOM

1024
(all rays)

4 8 16 32 64 128 256

1.0

.75

.50

.25

0

SR
D

H
 B

B
ox

 T
es

ts
(R

el
at

iv
e

to
 S

A
H

, r
an

do
m

)

Pre-rendering image size (N X N) for shadow ray set

SRDH Sensitivity to Sparse Representative Ray Sets
ARCADE

512

Figure 4: SRDH output is robust to the size of the repre-
sentative shadow ray set. Ray sets generated from a 16×16
pixel pre-rendering yield BVH quality comparable to that
achieved when all the shadow rays are known in advance.

occluded) so SRDH’s cost reduction for the small fraction
of occluded rays does not substantially improve the over-
all cost of tracing shadows in the scene. As expected, the
benefit realized by the SRDH on SPONZA echoes Bittner
and Havran’s [BH09] results for radiance rays (since in both
cases early termination is not possible).

4.2. Sparse Ray Sets

Bittner and Havran observe that the performance of their
ray distribution heuristic is stable even when representative
ray sets are sparse [BH09]. We find that the SRDH is simi-
larly stable. Figure 4 plots the resulting shadow tracing cost
for a 1024×1024 image as the size of the pre-rendered im-
age used to generate the representative shadow ray set is
changed. As in Section 4.1, we present traversal cost relative
to random traversal through a SAH tree. In all of our exper-
iments, evaluating the SRDH using shadow rays generated
from a 16×16 rendering of the scene results in shadow trac-
ing cost within 6% of that measured when all shadow rays
are used by the SRDH during BVH construction.

Intuitively, when a large fraction of shadow rays is oc-
cluded, the occluders tend to be large or densely packed. As
a result, even a sparse sampling of shadow rays reveals oc-
clusions in that region of the scene. These occlusions allow
SRDH to make intelligent traversal decisions, especially in
the upper levels of the BVH where an incorrect traversal de-
cision has the potential to have the biggest cost.

Resilience of the SRDH to representative ray set spar-
sity is important because precomputation costs are directly
proportional to ray set size. Statistics of performing SRDH-
based construction using ray sets obtained from 16×16- and
32×32-pixel pre-renderings are given in Table 1. (Measure-
ments were conducted using a single-threaded implementa-
tion of SRDH written in C#, executing on a 3.1 GHz In-
tel Core i5-2400.) This implementation examines up to 31
axis-aligned partitions in each spatial dimension. Recall that
an SRDH build leverages a SAH-constructed BVH to effi-
ciently compute ray-triangle intersections for the representa-
tive ray set. (This BVH is also needed to support radiance ray

BEDROOM ARCADE

1.0

.5

0
1 2 3 4 1 2 3 4

1. SAH build, random traversal (baseline)
2. SRDH build (constant kernels only)
3. SRDH build (front-to-back + back-to-front kernels only)
4. SRDH build (all kernels)

B
B

ox
 In

te
rs

ec
tio

n
Te

st
s

(r
el

at
iv

e
to

 S
A

H
 +

 ra
nd

om
 tr

av
er

sa
l)

Effect of Restricting SRDH Traversal Kernel Choices

Figure 5: The benefit of including the front-to-back and
back-to-front kernels (in addition to constant kernels) in the
traversal order search space is negligible for our test scenes
(results for BEDROOM and SPONZA are shown). A minor
benefit was noticeable in contrived setups.

computations during ray tracing.) The time needed to per-
form SAH BVH construction (see SAH column), as well as
the additional preprocessing time to construct a shadow-ray
optimized BVH using the SRDH (SRDH column) is given
in the table. On average, when evaluating the SRDH using
ray sets from 16×16 pre-renderings, the additional SRDH
build is 1.4× longer than a traditional SAH build. Therefore,
overall construction time to generate both structures is 2.4×
longer than SAH construction alone (SRDH Total). MAD-
SCI and BEDROOM contain multiple light sources and thus
feature the largest ray sets. Correspondingly these scenes re-
quire the longest preprocessing times.

4.3. Kernel Selection

For the results in Figures 2 and 4, we configured SRD-
HBuild to consider four possible traversal order kernels:
left-first (constant p = 0), right-first (constant p = 1), front-
to-back, and back-to-front. In general, optimization selects
one of the two constant kernels except in the case where two
distant light sources cause fields of rays going in opposite di-
rections, which occurs in ARCADE. We have also run exper-
iments in which we restrict available kernels choices, shown
in Figure 5. In all but our most contrived scenes, the penalty
from omitting front-to-back and back-to-front kernels from
the search space is negligible. Still, the existence of a sizable
center bar segment in Figures 2 and 5 suggests that unnec-
essary traversal still occurs for occluded rays. It is possible
that other kernels that we have not considered might be able
to avoid these poor traversal decisions.

c© The Eurographics Association 2012.

N. Feltman, M. Lee, & K. Fatahalian / SRDH: The Shadow Ray Distribution Heuristic

Ray Set from 16×16 Pre-render Ray Set from 32×32 Pre-render
Scene # Tris SAH (s) # Rays SRDH (s) SRDH Total (s) # Rays SRDH (s) SRDH Total (s)
MADSCI 80149 1.7 5505 3.0 4.7 (2.8×) 22477 6.2 7.9 (4.7×)
BEDROOM 361754 7.7 4864 10.1 17.8 (2.3×) 19198 12.2 19.9 (2.6×)
FAIRY 174117 3.6 366 4.6 8.2 (2.3×) 1451 4.7 8.3 (2.3×)
SPONZA 66444 1.2 416 1.6 2.8 (2.3×) 1648 1.8 3.0 (2.4×)
ARCADE 66444 1.2 774 1.7 2.9 (2.4×) 3110 2.1 3.3 (2.7×)

Table 1: BVH construction time statistics using shadow ray sets generated from 16×16- and 32×32-pixel pre-renderings.
Constructing a shadow-ray optimized BVH using the SRDH (SRDH, 16×16 pre-render) takes 1.3 to 1.8 times longer than SAH
construction (SAH). Constructing both BVHs increases build cost 2.3 to 2.8 times (SRDH Total) over SAH construction alone.

Shadow ray BVHs employing a mixture of only constant
left-first and right-first kernels (as effective as any other eval-
uated scheme) can be implemented with no additional space
or traversal time overhead by encoding traversal order into
BVH pointer structure. Always storing the first child to tra-
verse as the left child of a node allows simple “go left first”
traversal logic to implement the SRDH-determined policy.

5. Discussion

In this paper we simultaneously optimize BVH structure
and traversal order to decrease the cost of tracing shadow
rays. Co-optimization is possible because information about
a scene’s shadow rays and their occlusions is available dur-
ing build. By identifying frequent occluders during the build
process, we are able to produce a BVH where the path to
these occluders is short and specify a traversal order that di-
rects rays along this path. This approach reduces the num-
ber of traversal steps needed to compute shadows in our test
scenes by 22% to 56%.

The cost of our approach is additional preprocessing time
to construct a shadow-ray optimized BVH using the SRDH
as well as the memory overhead of this additional structure.
The increase in overall acceleration-structure size is at most
a factor of two, but may be less if primitive data is shared
among both BVHs. Our preliminary experiments show that
representative ray sets can be small, and that BVH construc-
tion costs can be kept within a factor of two to three of those
of a normal SAH-based build. When rendering is dominated
by the cost of tracing occluded shadow rays (a frequent case
in high-quality rendering [BH10]), BVH specialization us-
ing the SRDH may yield a notable performance increase.

With traversal improvements due to the SRDH, a greater
fraction of total shadow ray cost is due to unoccluded rays
which, like radiance rays, are more resistant to optimiza-
tion [BH09]. Decreasing this component of cost will likely
require breaking fundamental assumptions of the BVH, per-
haps by using more varied bounding volumes or redundant
decompositions. We believe our co-optimization approach
can be extended to include a wider variety of existing (and
future) ray-tracing acceleration techniques and that many of
these strategies stand to benefit from automatic optimization
over representative rays.

6. Acknowledgments

Thiago Ize, Warren Hunt, and Solomon Boulos provided
valuable advice during this project. This work was supported
by a gift from the Intel Corporation.

References
[BH09] BITTNER J., HAVRAN V.: RDH: ray distribution heuris-

tics for construction of spatial data structures. In Proceedings
of the 2009 Spring Conference on Computer Graphics (2009),
SCCG ’09, ACM, pp. 51–58. 1, 2, 4, 5, 6

[BH10] BOULOS S., HAINES E.: Sorted BVHs. Ray Tracing
News 23 (2010). 2, 6

[DKH09] DJEU P., KEELY S., HUNT W.: Accelerating shadow
rays using volumetric occluders and modified kd-tree traversal.
In Proceedings of the Conference on High Performance Graphics
2009 (2009), HPG ’09, ACM, pp. 69–76. 2

[FFD09] FABIANOWSKI B., FLOWER C., DINGLIANA J.: A cost
metric for scene-interior ray origins. In Eurographics Short Pa-
pers (2009), pp. 49–52. 2

[GS87] GOLDSMITH J., SALMON J.: Automatic creation of ob-
ject hierarchies for ray tracing. IEEE Computer Graphics and
Applications 7, 5 (May 1987), 14–20. 1

[Hav01] HAVRAN V.: Heuristic Ray Shooting Algorithms. PhD
thesis, Czech Technical University in Prague, 2001. 2

[HG86] HAINES E., GREENBERG D.: The light buffer: A
shadow-testing accelerator. IEEE Computer Graphics and Ap-
plications 6, 9 (Sept. 1986), 6–16. 2

[HM08] HUNT W., MARK W. R.: Ray-specialized acceleration
structures for ray tracing. In IEEE Symposium on Interactive Ray
Tracing (2008), pp. 3 –10. 2

[IH11] IZE T., HANSEN C.: RTSAH traversal order for occlusion
rays. In Computer Graphics Forum (Proceedings of Eurograph-
ics 2011) (2011), vol. 30. 2

[LBBS08] LACEWELL D., BURLEY B., BOULOS S., SHIRLEY
P.: Raytracing prefiltered occlusion for aggregate geometry.
In IEEE Symposium on Interactive Ray Tracing (Aug. 2008),
pp. 19–26. 2

[Smi98] SMITS B.: Efficiency issues for ray tracing. Journal of
Graphics Tools 3, 2 (Feb 1998), 1–14. 2

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray tracing de-
formable scenes using dynamic bounding volume hierarchies.
ACM Transactions on Graphics 26, 1 (Jan. 2007). 1

[WH06] WALD I., HAVRAN V.: On building fast kd-trees for ray
tracing, and on doing that in O(NlogN). In IEEE Symposium on
Interactive Ray Tracing (2006), pp. 61–70. 3

c© The Eurographics Association 2012.

