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Figure 1: (Left)Whale breaching with the PLSmethod using automatically generated removed particles for spray. Very little of
the water volume follows the whale’s motion because of volume loss on the relatively coarse Eulerian background grid. (Right)
Using the same Eulerian grid, our ALE based VOF method on the KDSM produces much more visually interesting sheeting
and spray effects.

ABSTRACT
We propose a novel volume conserving framework for character-
water interaction, using a novel volume-of-fluid solver on a skinned
tetrahedral mesh, enabling the high degree of the spatial adaptiv-
ity in order to capture thin films and hair-water interactions. For
efficiency, the bulk of the fluid volume is simulated with a stan-
dard Eulerian solver which is two way coupled to our skinned ar-
bitrary Lagrangian-Eulerianmesh using a fast, robust, and straight-
forward to implement partitioned approach. This allows for a spe-
cialized and efficient treatment of the volume-of-fluid solver, since
it is only required in a subset of the domain. The combination of
conservation of fluid volume and a kinematically deforming skinned
mesh allows us to robustly implement interesting effects such as
adhesion, and anisotropic porosity. We illustrate the efficacy of our
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method by simulating various water effects with solid objects and
animated characters.
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1 INTRODUCTION
Character-water interaction is a widespread phenomenon in the vi-
sual effects industry, and there have been many efforts to push for
higher quality water interaction with animated characters such as
King Kong inKong: Skull Island (2017), Hank the octopus in Finding
Dory (2016), and various characters in Moana (2016).
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Figure 2: (Left) A KDSM mesh around a whale in a normalized pose (also known as T-pose or rest pose). (Right) A sample
animation showing the KDSM skinned to follow an animation of a whale breaching.

Arguably, themost obvious approach to obtainingmore detailed
features anywhere in the domain is to place more degrees of free-
dom in the region of interest. A number of adaptive methods have
been developed such as Adaptive Mesh Refinement (AMR) [Suss-
man et al. 1999], octree data structures [Losasso et al. 2004], [Losasso
et al. 2006], [Aanjaneya et al. 2017], lattice based tetrahedral meth-
ods [Chentanez et al. 2007], [Batty et al. 2010], [Ando et al. 2013],
and Chimera grids [English et al. 2013a], [English et al. 2013b].
While thesemethods greatly improvewater simulation detail through
adaptivity, various authors have noted numerous drawbacks in-
cluding the need to remesh very often, difficulties in implemen-
tation, performance bottlenecks induced by high communication
costs, and issues related to domain decomposition due to a large
number of small patches. These issues are exacerbated when the
adaptivity is required near boundaries with animated characters,
since the character motion can rapidly change the region in space
where the adaptivity is required. A more natural approach would
be to use an adaptive mesh that moves with the character such
as the recently proposed kinematically deforming skinned mesh
(KDSM) of [Lee et al. 2018]. This allows one to prebake the adap-
tivity so that on-the-fly refinement is not required during the sim-
ulation. This makes the method straightforward to implement and
robust in its handling of delicate phenomena.

Evenwith additional degrees of freedomnear the animated char-
acter, the highly dynamic water motion and thin films are notori-
ously difficult to simulate due in large part to both volume loss and
difficultieswith imposing proper boundary conditions between the
water and the character.We address volume conservation by propos-
ing a novel volume-of-fluid (VOF) method implemented on the
KDSM. Although our proposed VOF method is novel, it is similar
in spirit to other VOF methods such as [Mihalef et al. 2004], [Mi-
halef et al. 2006] in that no fluid volume is lost, especially as com-
pared to typical Eulerian methods. VOF method is a well known
technique as demonstrated in [Hirt and Nichols 1981], [Brackbill
et al. 1992], [Rider and Kothe 1998], and [Sussman and Puckett
2000]. There have been some recent interesting works on bound-
ary conditions between solids and fluids such as [Zhang et al. 2016],
[Zarifi and Batty 2017] using an Eulerian fluid grid (see [Akinci
et al. 2013a] for SPH); however, it is more natural to specify these
types of boundary conditions when the fluid grid is moving along

with the solid in its Lagrangian frame, even if it is deforming a bit
in that frame as is the case with KDSM. With this treatment, much
of the fluid moves along with the mesh being driven by the char-
acter animation (which is also driving the mesh) meaning that less
fluid volume flows from one computational cell to another. This is
the typical arbitrary Lagrangian-Eulerian (ALE) approach, see for
example [Feldman et al. 2005a], [Feldman et al. 2005b], [Klingner
et al. 2006]. Notably, our method significantly differs from exist-
ing ALE implementations in that our ALE mesh is prebaked based
on kinematically prescribed motion and has topology that remains
consistent throughout the entire animation sequence. This separa-
tion of the remeshing step resolves a key problem of ALE based
methods which can lack robustness due to the numerical instabili-
ties caused by ill-formed elements–this can now be addressed dur-
ing a preprocessing step.

In order to increase the overall efficiency and efficacy of our ap-
proach, we only utilize the ALE based VOF method on the KDSM
near the animated character while using a standard Eulerian based
Cartesian grid solver in the rest of the domain, in our case the par-
ticle level set (PLS) method [Enright et al. 2002a], [Enright et al.
2002b], including spray particles [Losasso et al. 2008]. It is impor-
tant to note that the PLS method is a hybrid method combining
particle and grid representations, and early work was presented
in [Foster and Metaxas 1996] where they implemented a precur-
sor to PIC/FLIP while removing unneeded interior particles far
from the surface to boost performance and using level set to recon-
struct smooth surface. Recently, [Ferstl et al. 2016] proposed fur-
ther improvements of PLS and FLIP hybrid method. Thus, PLS and
PIC/FLIP share important commonalities, and our VOFmethod can
improve PLS or PIC/FLIP or any other method combining particle
and grid representations.

Note that our spray particles carry mass and momentum as in
[Losasso et al. 2008] for visual quality when spray particles inter-
acts with water surface instead of using massless particles as in
vanilla PLS. Importantly, the conservative nature of our VOF solver
allows for relaxation of the numerical approach especially since
the VOF solver is only required in a small subset of the domain
near the character while a standard Eulerian solver is used else-
where. Thus, we devise a straightforward partitioned (as compared
to monolithic) approach to the coupling of the fluid flow equations
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Figure 3: (Top Left) A standard PLS simulation on a rela-
tively coarse Eulerian grid. (Top Right) Our ALE based VOF
method on the KDSM achieves better water sheeting and
volume conservation using the same Eulerian grid. (Bot-
tomRow)Applying adhesion forces to both simulations pro-
duces the desired clinging to the ball with our method but
has almost no effect on the PLS simulation.

between the Eulerian Cartesian grid and the ALE based VOF solver
on the KDSM; see Section 4. Importantly, this combination of a
standard Eulerian solver on the bulk of the domain with an ALE
based KDSM mesh near the character allows the proposed VOF
scheme to be incredibly simple, as discussed in Section 3, which is
quite notable given the typical high level of complexity one usually
confronts with VOF methods.

The first contribution of this paper is our strategy of prebaking
the dense ALE mesh which occupies the space near the object or
creature of interest, taking advantage of the adaptivity to capture
detailed water phenomena based on the intuition that most inter-
esting water effects are focused near the creature. We achieve a
robust simulation method by separating the nontrivial mesh pro-
cessing operations from the simulation stage and incorporating
them into a preprocessing stage, where we precompute various
auxiliary data in order to improve the performance of the simu-
lation. Our second contribution is our novel VOF method, which
conserves volume within the ALE mesh, whereas the PLS method
in the background alone does not. Our approach of conserving vol-
ume near the object or creature of interest allows us to implement
various adhesion and porosity effects robustly and with mecha-
nisms for artistic control. The third contribution of our method is
the straightforward partitioned approach for coupling the coarse
background Eulerian grid and our fine ALE mesh, which greatly
streamlines the development process.

2 KDSM
Following [Lee et al. 2018], we generate a KDSM from a tetrahe-
dral BCC (body centered cubic) lattice as in [Molino et al. 2003]
using a thickened level set of the triangulated surface skin mesh
of a creature or an object in a normalized pose (see Figure 2 left).

Figure 4: Same as Figure 3, but using an even smaller water
stream accentuating the benefits of our approach especially
when considering volume conservation.

Then, given an animation sequence of the creature’s triangulated
surface skin mesh, the KDSM nodes inside the creature are mor-
phed to follow the animation as per [Ali-Hamadi et al. 2013; Cong
et al. 2015] capturing the kinematic deformation of the creature’s
skin and its volumetric interior. We connect the KDSM nodes that
are exterior to the skin mesh of the creature to one another and to
the internal nodes via a constitutive model (mass spring), so that
the KDSMnodes that are external to the creature also follow the an-
imation (see Figure 2). In addition, zero length spring attachments
are connected between the creature’s skinmesh and corresponding
barycentric locations in the KDSM in order to obtainmore accurate
deformations of the KDSM near the creature’s skin.

[Lee et al. 2018] embedded hair particles in the KDSM so that
they would follow the skinned animation sequence (see Figure ??).
Each hair’s base particle is embedded on the surface of the char-
acter’s triangle mesh skin and the rest of hair particles are embed-
ded in the tetrahedral mesh using hard bindings as in [Sifakis et al.
2007]. They also showed how a duplicated KDSM which is follow-
ing the original constrained with zero length springs could be used
to produce more dynamic hair behavior. Since the original KDSM
sequence contains a significant portion of the desired motion, fur-
ther iterations for dynamic hair behavior becomes much more effi-
cient. In addition, they showed the benefits of the KDSM when
simulating individual hairs as well as how to use the KDSM to
implement a blendshape system including the effects of clumping,
sagging, and matting. They simulated individual hairs using [Selle
et al. 2008] and soft bindings (see [Sifakis et al. 2007]) connect-
ing hair particles and their corresponding desired positions in the
KDSM via zero length springs. They proposed a shape-preserving
tetrahedral column to maintain the original style of the hair also
connected to hair particles via zero length springs. The blendshape
hair component is implemented as a collection of barycentric co-
ordinates for each hair particle, and can be interpolated in time to
implement a change in hairstyle over time (e.g. bear getting wet in
the water). Then length preservation and interpenetration is run as
a post-process, shortening the each hair segment to its rest length
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Figure 5: The red backtraced triangle uses each of its 10 quad-
rature point samples to transport water from the old mesh
to the new one. Here, we render both the old and the new
mesh in the same location assuming that the KDSM is not
moving for simplicity of depiction. Each red dot point sam-
ple would attempt to remove 1/10 of the area of the red tri-
angle from the specific yellow triangle that it is interior to.

(see [Müller et al. 2012; Sánchez-Banderas et al. 2015]) and apply-
ing pushout method from [Bridson et al. 2003]. Interestingly, they
demonstrated how the air volume enclosed by the KDSM could be
utilized to add adhesion and drag effects, porosity for hair, etc.

A major shortcoming of this prior work in regards to water sim-
ulation is that the KDSM is merely used to provide information
such as forces that augment the treatment of the Eulerian grid.
Thus, all the typical drawbacks of volume loss, etc., are not only
still present but potentially worsened by these additional forces.
See, for example, Figure 3 and 4.

3 KDSM FLUIDS
Our novel ALE based VOF method on the KDSM produces com-
pelling results even though it has none of the complexities asso-
ciated with typical VOF methods–even the volume conservation
step is quite simple. We stress that the ability to use such a simple
method is due in large part to the partitioned coupling discussed
in Section 4, the adaptivity of the KDSM, exact volume conserva-
tion, and the Lagrangian nature of the KDSM as it follows the an-
imated creature. Our VOF method fully conserves volume within
the KDSM, while the rest of the domain simulated using the PLS
method does not.

3.1 Precomputation
Starting from the original KDSM animation, we precompute auxil-
iary information such as adaptivity by subdividing the KDSM until
a desired resolution is reached (for our examples, we subdivided
KDSM multiple times until the size of tetrahedron is 4 to 8 times
smaller than the background grid cell size). Prebaking subdivisions
to obtain per-frame ALE meshes with consistent topology greatly
increases the robustness and minimizes computation time as com-
pared to typical ALE remeshing. We subdivide using [Molino et al.
2003], but only utilized the subdivision operation part without any
adaptivity features as we wanted an evenly subdivided ALE mesh.
Although we opt to precompute our KDSM, one could subdivide
on-the-fly if desired. Note that we use a relatively coarse KDSM
to run a mass spring simulation and then subdivide the resulting

Figure 6: The triangles cut by the green solid surface region
would be assigned rank 0, their node neighbors shown in
red would be rank 1, and their node neighbors shown in yel-
lowwould be rank 2. The arrow shows how a rank 1 triangle
needs to look non-locally in order to find a rank 2 triangle
that it can deposit excess water into.

KDSM for performance reasons. One can always use a dense KDSM
to obtain better boundaries near the creature’s skin, but we found
the current scheme sufficient for our examples. We additionally
precompute a number of useful quantities such as per node veloci-
ties and a level set volume for every frame of the animation. Every
cut cell tetrahedron, those containing a part of the creature’s sur-
face, is assigned a surface normal and object velocity. Those sur-
face normals and object velocities are extrapolated to every tetra-
hedron of the KDSM exterior to the creature using the level set
information.

Per tetrahedron solid occupancy is precomputed in the cut cells
using point samples and the quadrature formula of [Zhang et al.
2009] testing how many point samples are inside of the creature
using the level set representation. Instead of using the exact vol-
ume, we simply use the fraction of point samples inside and out-
side the creature to compute an approximate volume. This added
simplicity is equivalent to a slight sub-tetrahedral perturbation of
the solid surface. Obviously, this could be done more accurately,
but we found that this simple method worked quite well, and sim-
plicity and efficiency is highly desirable when one might want to
refine near the surface of the creature on-the-fly.

Our proposed volume conservation method is motivated by the
shock propagation for rigid bodies from [Guendelman et al. 2003].
As such, we precompute the rank of each tetrahedron as its topo-
logical distance from the creature, similar in spirit to the contact
graph from [Guendelman et al. 2003]. Tetrahedra fully inside the
creature are assigned a rank of −1, and partially filled tetrahedra
are assigned rank 0. Then, all tetrahedra with unassigned ranks
that are node neighbors of rank 0 tetrahedra are assigned rank 1.
Rank 2, rank 3, etc. are assigned similarly.

3.2 Advection
We store vector valued velocities as per tetrahedron values, and
multiplying by the mass of water in a tetrahedron yields momen-
tum. Our ALE based VOF method updates the velocity and the
amount of water in each tetrahedron on a new mesh given values
on an old mesh.

First, for each tetrahedron, we trace its nodes backwards in time
using its vector valued velocity multiplied by ∆t . As shown in
Figure 5, this rigidly translates the tetrahedron. Alternatively, one
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Figure 7: Our ALE based VOF method provides robust adhe-
sion control to produce various effects. All four of these ex-
amples are obtained by merely varying adhesion effects.

could instead compute per node velocities, but we have found this
unnecessary. If a backtraced node collides with a solid surface, it
is clamped to that location. Thus, the backtraced tetrahedron does
not deform unless it hits a solid surface. The resulting backtraced
tetrahedron (shown in red in Figure 5) is used to collect water from
the old mesh in order to deposit it on the newmesh. Instead of per-
forming the usual complex geometric intersections between back-
traced tetrahedra and the old mesh, we take a simpler approach
using a number of quadrature formula point samples (again from
[Zhang et al. 2009]). Each point sample (shown as a red dot in Fig-
ure 5) attempts to transport a certain amount of water from the
old mesh tetrahedron it lies within (shown in yellow in Figure 5)
to the original tetrahedron on the new mesh (shown in green in
Figure 5). This potential amount of transported water is calculated
as the volume of the backtraced tetrahedron divided by its number
of point samples. Both water volume and associated momentum
are transported. If a point sample falls outside the KDSM, we com-
pute the amount and momentum of water to transport using inter-
polation from the background Eulerian grid. Note that this water
is not removed from the background grid, since the background
grid is treated in an Eulerian fashion and updated properly via the
coupling proposed in Section 4.

The aforementioned advection might attempt to transport more
water out of a tetrahedron on the old mesh than that tetrahedron
contains. This could occur because of size differences between tetra-
hedra or because multiple point samples from separate tetrahedra
of the new mesh request water from the same tetrahedron on the
old mesh. Thus, in a second step, we visit every tetrahedron on the
old mesh and scale down the amount of water each point sample
removes in order to match the total volume of water in this old
mesh tetrahedron as in [Lentine et al. 2011].

In a third step, we identify any tetrahedra on the old mesh that
may have excess water, which was not transported to the new
mesh, and forward advect this water to the new mesh similar to
[Lentine et al. 2011], [Lentine et al. 2012], [Klingner et al. 2006].
However, our method can be much simpler because we track the

exact volume of water with our VOF method, and therefore do not
mind overfilling tetrahedra because they are drained to their ap-
propriate volume during the volume conservation step (see Section
3.3). For each tetrahedron on the old mesh that requires forward
advection, we use that tetrahedron’s velocity to advect its nodes
forward in time (in the opposite direction of Figure 5) and use its
point samples to locate which tetrahedra in the new mesh will re-
ceive its water. Similar to backward advection, we clamp nodes
that collide with solids, use the number of point samples and the
original tetrahedron volume to decide on the fraction of water de-
posited in each target tetrahedron, and utilize special treatment
for any point sample that leaves the KDSM and lands on the back-
ground Eulerian grid. In particular, we find particle creation to be
quite useful for transporting water off of the KDSM (see Section
4.1).

3.3 Volume Preservation
Our volume conservation method is used to enforce incompress-
ibility on the new mesh using our precomputed rank. The method
consists of three parts: smear, pushout, and velocity correction.
Pushout transports excess water and associated momentum out-
ward from the creature’s skinmesh using rankmotivated by [Guen-
delman et al. 2003]. However, this ignores the fact that the fluid can
rotate and move laterally, so we first apply what we refer to as a
smearing step to account for this behavior. Both the smear and the
pushout step transport the volume and associated momentum to-
gether. Finally, velocity correction is used to apply boundary con-
ditions on the water from the creature.

We refer to tetrahedra as oversaturated when they contain more
water than their volume should allow. The smearing step loops
over oversaturated tetrahedra, except those on the boundary of the
KDSM, and distributes the excess fluid equally to face neighbors.
The boundary tetrahedra are taken care of in the pushout phase.

For pushout, we iterate over oversaturated tetrahedra in order
from the lowest rank to the highest startingwith tetrahedra of rank
0 which intersect the creature’s skin mesh. For each oversaturated
tetrahedron, we distribute as much excess fluid as possible equally
to its face neighbors that are not yet fully saturated. If there is
still excess fluid after every neighbor is saturated, it is distributed
equally to all face neighbors with strictly higher ranks. Note that
it is possible to have a tetrahedron without any valid neighbors to
distribute water to, since the creature skin mesh can have narrow
space between solid surfaces as illustrated in Figure 6. To handle
this case, we preprocess the neighbor information using breadth
first search to look for non-local neighbors with higher ranks to
properly transport excesswater to. Although not trivial, this can be
done in the preprocessing step after determining rank. For bound-
ary tetrahedra, we transfer excess fluid to the background Eulerian
grid for particles as discussed in Section 4 and 4.1, respectively.

Finally, velocity correction is used to apply boundary conditions
on the fluid from the creature. We assign a Boolean flag per tetra-
hedron indicating whether its fluid velocity needs to be corrected,
and initialize all flags to false. Then, we iterate over all cut cell tetra-
hedra with water and set flags to true. Subsequently, we loop over
the tetrahedra in the same order as in the pushout phase, clamping
the normal component of the fluid velocity to be the precomputed
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Figure 8: A whale breaches out of the water. (Top Row) Visualization of the Eulerian water. (Second Row) VOF tetrahedra water
is rendered in pink. (Third Row) Particles are shown in yellow. (Fourth Row) Final rendering.

object normal velocity when the flag is set to true and the normal
component of velocity is smaller than the precomputed object nor-
mal velocity. Higher rank tetrahedra have their Boolean flag set to
be true when they have a lower rank face neighbor which is fully
saturated that required clamping. This limits the enforcement of
boundary conditions to those tetrahedra exposed to the creature
surface by a column of water. Although this removes circulation on
the KDSM, the circulation is restored from the background Euler-
ian grid during coupling as discussed in Section 4.

This approach is not a standard projection scheme, but still en-
forces a divergence free condition thereby enforcing incompressib-
lity. One other notable approach that is not an advection-projection
scheme is [Zehnder et al. 2018]. To elaborate, fluid simulated using
the Navier-Stokes equations is assumed to obey the conservation
of mass equation (i.e. no fluid is created or destroyed):

∂ρ/∂t + ∇ · (ρu) = 0 (1)
∂ρ/∂t + ρ∇ · u + u · ∇ρ = 0 (2)

Here, u is the fluid velocity, t is time, and ρ is the fluid density. By
the product rule, (1) equivalent to (2). Using this equation, it can be
seen that setting ∇·u = 0 is equivalent to setting ∂ρ/∂t+u ·∇ρ = 0.
Either condition implies the other–they are equivalent from the
conservation of mass. Setting ρ =m/V and using the product rule:
(1/V )(∂m/∂t) − (m/V 2)(∂V /∂t) + u · ((1/V )∇m − (m/V 2)∇V ) = 0

(1/V )(∂m/∂t + u · ∇m) − (m/V 2)(∂V /∂t + u · ∇V ) = 0
The first term (1/V )(∂m/∂t + u · ∇m) must equal zero since mass
is conserved along streamlines. This means ∂V /∂t + u · ∇V must
also equal zero, and taking this with the divergence free condition
∇ · u = 0 yields:

∂V /∂t + ∇ · (uV ) = 0
Thus, conserving volume is equivalent to enforcing a divergence-
free velocity field.
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With regard to maintaining the incompressibility of a simulated
fluid, we note that a standard projection scheme such as the clas-
sic method introduced by [Chorin 1968] is just one proposed al-
gorithm for this task. In fact, Chorin advocated at least two dis-
tinct schemes [Chorin 1967], though the advection-projection pro-
cedure became most popular. Chorin-style projection claims that
one can advect a fluid state ad-hoc off of the manifold of all in-
compressible fluid fields and then correct the ensuing error by pro-
jecting back onto that manifold. However, these projection-style
schemes are known to be brittle (e.g. they require small time steps
and do not even always converge under temporal refinement), and
they are well-known to be unable to capture important physics of
fluids (such as viscosity, due to its parabolic nature). Thus, solv-
ing a pressure Poisson equation to enforce a divergence-free ve-
locity field is not the ultimate, and certainly not the only, numeri-
cal scheme to simulate incompressible flow. Our technique, which
indeed differs from a pressure projection, is able to successfully
and robustly conserve volume, which as shown above implies the
standard incompressibility condition. Hence our volume conserva-
tion method maintains a faithful relationship with the underlying
fluid principles and equations. Moreover, at a high level, we remark
that even the Navier-Stokes equations quickly fail to be a physi-
cally accurate model when considering real-world flow problems
i.e. turbulence; however, such approximations are heavily relied
upon in computer graphics due to their computational amenabil-
ity and their ability to produce visually plausible results.

3.4 Adhesion
We allow an artist to paint adhesion coefficients α and force di-
rections ®d on the triangulated surface mesh of the creature, and
then we rasterize this information to the KDSM setting adhesion
quantities in rank 0 tetrahedra. We propagate adhesion quantities
to face neighbors (or non-local neighbors) of strictly higher rank
tetrahedra by averaging the adhesion quantities from lower rank
neighbors forwhich adhesion had already been specified.We apply
an adhesion force α ®d when a tetrahedron is within a prescribed dis-
tance φa from the creature’s surface with linear falloff, i.e. α(φa −
φ)/φa ®d where φ is the distance from the creature’s surface (similar
to [Zhu et al. 2014]).

Figure 7 illustrates some of the many interesting visual effects
obtainable by varying adhesion parameters. Notably, it is the ro-
bust volume conservation of our VOF method and the adaptivity
of the KDSM that allows for such interesting effects. We attempted
similar simulations using a standard Eulerian method and mostly
achieved disturbing volume loss. The top row shows how increas-
ing adhesion (from left to right) makes the water to stick to the
ball and flow around to the bottom surface before separating. The
bottom left image was created with vectors ®d pointing outwards
from the ball at various locations to produce thickened streams. In
contrast, the bottom right figure shows how the vectors ®d can be
used to direct water away from parts of the ball’s surface, drying
it out.

4 PARTITIONED COUPLING
We utilize three different representations for water: besides the
VOF representation on the KDSM, we also use both free particles

and velocities on the background Eulerian Cartesian grid as is typi-
cal for the standard PLSmethod (see e.g. [Enright et al. 2002b]). See
Figure 8. Our partitioned coupling method consists of four major
steps. In the first step, each of our three representations (VOF tetra-
hedra, particles, and Eulerian Cartesian grid) are advected forward
in time. The method of Section 3.2 is used for the VOF tetrahedra,
while the standard PLS method is used to advect the Eulerian grid
velocities and to move the particles. In a second step, momentum
is transferred between the three representations in order to max-
imize the visual efficacy of the results. Then, external forces are
independently added to each representation, before projecting the
velocity into a divergence free state acceptable to all three repre-
sentations. The steps are summarized below:

Algorithm 1 Pseudocode

1: function Partitioned Coupling
2: Advection()
3: Momentum Transfer()
4: Add External Forces()
5: Volume Conservation()
6: function Advection (each stage is independent)
7: VOF advection (Section 3.2)
8: Particle advection
9: Eulerian advection
10: functionMomentum Transfer
11: Transfer momentum from VOF to Eulerian (optional)
12: Transfer momentum from Eulerian to VOF
13: VOF particle reincorporation
14: function Add External Forces (each stage is independent)
15: VOF external forces
16: Particle external forces
17: Eulerian external forces
18: function Volume Conservation
19: VOF volume conservation (Section 3.3)
20: Eulerian Projection()
21: Transfer momentum from Eulerian to VOF
22: function Eulerian Projection
23: Eulerian particle reincorporation
24: Projection

Both the particles and the VOF tetrahedra carry accurate La-
grangian momentum information, as compared to the typically
more smeared out velocities obtained using semi-Lagrangian ad-
vection (see e.g. [Stam 1999]) on the Eulerian grid. Note that we
allow VOF tetrahedra to overlap with the Eulerian water. Thus, we
allow for the option to first transfer some momentum from the
VOF tetrahedra to the Eulerian grid. Typically, this increases the
turbulence near the boundaries of a moving creature. This is ac-
complished by iterating over tetrahedra with water and averaging
their momentum with the values on the background Eulerian grid
using an artist controllable multiplier. The result is used to over-
write the value on the Eulerian grid.

Next, the velocities of the Eulerian grid are used to overwrite
the momentum value of any tetrahedron which has all four of
its nodes inside the water surface representation of the Eulerian
grid. The tetrahedron’s volume is also set to be fully saturated with
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Figure 9: Top row compares the particle positions obtained
with uniform versus jittered sampling emphasizing how
well our eyes capture structured information (even when
we do not want them to). Bottom row compares the two ap-
proaches for an actual simulation.

water. This overwrite operation does not use averaging since the
background Eulerian grid has a full-fledged pressure solver that
tracks velocities more accurately preserving various effects such
as the circulation (discussed in Section 3.3). Importantly, cut cell
tetrahedra are not overwritten allowing them to more accurately
track volume andmomentum close to the boundary of the creature.
Higher ranks of tetrahedra could also be allowed to preserve their
information if desired, although we did not experiment with this
option.

Finally, any particle that lies within a VOF tetrahedron that con-
tains water is deleted, and its volume and momentum are added to
that tetrahedron. This allows particles to freely move through the
region of space occupied by the KDSM only being reincorporated
into the VOF representation when they impact water regions as
defined by the VOF tetrahedra.

The volume conservation step starts out with the method pro-
posed in Section 3.3, i.e. smear, pushout, and velocity correction,
in order to create an adequate velocity for the VOF tetrahedra on
the KDSM. Then, particles are reincorporated into the background
Eulerian grid as Eulerian water when appropriate applying a lo-
cal momentum force, altering the level set, and adding an expan-
sion force similar to [Losasso et al. 2008]. Following the standard
PLS projection scheme, the results of the pressure solve are subse-
quently added to the Cartesian grid velocity in order to obtain a
divergence free field. As a final step, the divergence free Eulerian
grid velocities are used to overwrite the momentum in any tetra-
hedron that has all four of its nodes interior to the Eulerian grid
water representation.

4.1 Particle Generation
The automatic generation of particles in visually compelling loca-
tions by hybrid particle level set methods has been one of their

strengths even predating the PLS method, see [Foster and Fedkiw
2001]. Thus, we devise a method similar in spirit for our ALE based
VOF method on the KDSM. As discussed in Section 3.2, advection
might dictate that water moves off of the KDSM. This occurs when
part of a forward advected tetrahedron lies outside of the KDSM.
This is detected by checking whether or not the point samples of
the tetrahedron lie outside of the KDSM. Each point sample had
already been assigned a certain amount of water to transport, so
we use that water’s volume and momentum to create a particle
with appropriate radius and velocity. Note that we use a standard
volume equation for a sphere, V = 4/3πr3, to get radius. Since a
straightforward approach leads to noticeable aliasing, we jitter the
particle locations by a small amount–we used a fraction ranging
from .1 to 1 multiplied by maximum edge length of a tetrahedron
for our jitter magnitudes (see Figure 9). As discussed in Section 3.3,
tetrahedra on the exterior boundary of the KDSM may contain ex-
cess water that needs to be transported off of the KDSM. In this
scenario, there is no natural advection direction. Thus, we move
the particles across the exterior face of the tetrahedron while also
applying appropriate jittering. Note that when water leaves the
KDSM, it always goes through particle phase before rejoining the
level set.

4.2 Rendering
As is the case for many of the state-of-the-art Lagrangian methods,
rendering smooth surfaces is quite difficult. Many authors have
proposed various strategies, such as applying smoothing kernel
on implicit surfaces as in [Blinn 1982], [Zhu and Bridson 2005],
[Adams et al. 2007], [Solenthaler et al. 2007], [Museth et al. 2007],
[Williams 2008], [Sin et al. 2009], [Onderik et al. 2011], [Bhatacharya
et al. 2011], [Müller and Chentanez 2011], explicitly tracking fluid
surfaces as in [Brochu and Bridson 2009], [Brochu et al. 2010], and
polygonalizing fluid surfaces as in [Akinci et al. 2012a], [Akinci
et al. 2012b], [Akinci et al. 2013b], [Wu et al. 2016]. Since most of

Figure 10: Our anisotropic porositymodel is implemented to
influence the VOFmethod on theKDSMaccounting for both
limited volume fraction and drag/adhesion yielding visually
compelling results.
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Figure 11: (Left) Whale breaching with the PLS method on
high resolution grid. The whale pulls very little water along
with it. (Middle) FLIP method, which also produces similar
amount of sprays. (Right) Ourmethod pullsmorewater into
the air with the whale, producing interesting effects.

this research has been focused on rendering particles as opposed
to triangles, we do not use a marching tetrahedra approach as in
[Doi and Koide 1991], [Müller and Wehle 1997] (the resulting sur-
face via marching suffered from excessive bumps and sharpness,
which was not suitable for graphics applications). Instead, we con-
vert the VOF tetrahedra water into particles and render them along
with the other particles. This is done by creating point samples per
tetrahedron based on the quadrature formula (without jittering).
Then, we attract the particles that are near the level set represent-
ing the water surface towards that level set in order to flatten out
bumps created by the cut cell tetrahedra near the boundary of the
level set. Finally, we use [Yu and Turk 2010] (see also a slight vari-
ant of this method [Yu and Turk 2013]) to create an implicit sur-
face from the particle data, and merge this implicit surface with
the Eulerian grid level set to obtain the final water surface that we
render. The resulting level set still has some bumps due to the lim-
itations of the anisotropic kernel, so we additionally smooth the
normals during rendering. We stress the fact that we only render
the final merged level set on a high resolution grid, and do not
directly render the particles.

5 HAIR-WATER INTERACTION
We embed hair particles in the KDSM and treat the hair using the
KDSM as in [Lee et al. 2018] (we also refer the interested reader
to [Rungjiratananon et al. 2012], [Lin 2014], [Fei et al. 2017], [Fei
et al. 2018] for more discussion on hair-water interaction). Our
hair-water approach is volumetric in nature, rasterizing multitude
of hair representation into KDSM as opposed to [Fei et al. 2017],
where they focus on a reduced model for individual hair strands.
As a result, our method handles hair-water interaction with 540k
hairs as opposed to 5k and 30k as given in [Rungjiratananon et al.
2012] and [Fei et al. 2017], respectively. For each tetrahedron con-
taining hair we precompute the volume fraction occupied by the

hair and reduce the water that this tetrahedron may contain at
saturation by this amount. This gives a very accurate representa-
tion of the porosity. We also compute the average direction of the
hair strands in each tetrahedron, so that we may treat the porosity
anisotropically. Essentially, more drag is applied orthogonal to the
average direction of the hair strands. See Figures 10, 12, 13.

6 RESULTS AND DISCUSSION
3.06GHz CPU (12 cores) and 96GB RAM was used. KDSM genera-
tion for the whale and bear examples took 10 min / frame, and each
frame is temporally independent so we ran them in parallel. The
ball examples (Figures 4 and 7) took 1 min and 2 sec / frame to run
with a 100x100x100 Eulerian grid, 5.6 million KDSM elements, and
.9 million KDSM particles. The bear pour example (Figure 10) took
7 min and 3 sec / frame with a 200x200x400 grid, 8.2 million KDSM
elements, and 1.4 million KDSM particles. The bear walk example
(Figure 12) took 4.5 min / frame with a 100x200x200 grid, 8.2 mil-
lion KDSM elements, and 1.4 million KDSM particles. The whale
example took 20 min / frame with a 200x300x200 grid, 8.5 million
KDSM elements, and 1.4 million KDSM particles whereas the PLS
method-only example took 29 min / frame using a 350x525x350
grid. If we run the PLS method for the whale example at an even
higher resolution, we can eventually achieve higher quality results
by carrying more water volume with the whale, but this would
require significant time investment. Figure 11 qualitatively com-
pares PLS, FLIP, and our method, and illustrates the benefit of our
method regarding visual quality.We used Neumann boundary con-
dition for solid boundaries for PLS method. For all our examples,
we generated 5 to 35 samples per tetrahedron based on the quad-
rature formula.

There are fundamental limitations of ALE based methods espe-
cially regarding meshing problems, so we implement a couple of
simple remedies below to fix the occasional degeneracy in order
to run all of our examples robustly. Note that the animated crea-
ture can move in a way that inverts its elements or prevents vol-
ume preservation of the surrounding space unless the artist is very
careful–most of issues appear near joints and are worsened by lin-
ear blend skinning. We only need to iterate a couple of times in the
preprocessing stage to resolve most of these issues, and we disable
any remaining degenerate elements (inverted or collapsed) so that
they cannot participate in the VOF solver. Thus, whenever a sam-
ple point falls in degenerate elements, particles will be formed in-
stead of the located element receiving water. While one could bet-
ter prevent element inversion by using FEM, in practice our simple
mass spring model was sufficient. Rarely when we cannot properly
advect or enforce incompressibility during the simulation because
a VOF tetrahedron is completely surrounded by the solid due to an
extreme creature deformation, we simply keep the water in that
tetrahedron in order to exactly conserve volume until the issue is
resolved as the surrounding solid opens up.

Ourmethod fully conserves volume in the KDSM, although float-
ing point drift causes small volume error throughout the simula-
tion. We measured the volume error per frame for ball example in
top right of Figure 4 for 400 frames. The average volume error per
frame was 0.00089%, and the maximum error was 0.00189%.
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Figure 12: A bear walks out of a pool onto land, still carrying and dripping a large amount of water from its fur. Our anisotropic
porositymodel accounts for the correct volume fraction of water in the fur and uses adhesion to pull that water out of the pool
with the bear, subsequently slowing dripping the water out of the fur. This example emphasizes the efficacy of the adaptivity
of the KDSM as well as the ability to preserve volume and avoid disappearing water with our VOF method.

As future work, one could implement a different solver such as
[Jiang et al. 2015], [Ihmsen et al. 2012], or [Chentanez et al. 2014] to
simulate fluid in the background grid or in the KDSM, and the adap-
tivity of our method will improve the accuracy of chosen method.
In order to generalize our method to a pure FLIP/PIC/APIC variant,
the data transfer function would need to be rewritten in order to
refer to the KDSMwhen the particle is inside of the KDSM, and the
interpolation schemewould need to be modified to use barycentric
weights for tetrahedron. Then, [Ando et al. 2013] could be used
to handle non-advection steps. Thus, FLIP/PIC/APIC variant can
benefit from the dense KDSM mesh instead of using the coarse
background Eulerian grid when the method transfers data from
particles to the KDSM. We emphasize the technical insight that
the coarse background grid captures a low frequency fluid surface
whereas around the creature with high frequency boundaries we
use the dense KDSM mesh to capture high frequency fluid motion.
We chose the PLS method because it generates a very smooth sur-
face, which is suitable for background motion, whereas our ALE
based VOFmethod is more geared towards capturing detailed fluid
motion by preserving volume to compensate for the PLS method’s
limitation. Additionally, one can subdivide on-the-fly if adaptive
remeshing based on the fluid motion is desired.

7 CONCLUSIONS
Weproposed a newfluid simulation framework for character-water
and hair-water interaction using our novel volume conservingVOF
method based on an adaptive tetrahedral mesh from the KDSM,
which moves with the creature. We prebake the adaptivity of the
ALE mesh, separating the nontrivial remeshing issue from the sim-
ulation phase and improving the robustness of our ALE based VOF
method; we further preprocess auxiliary data wherever possible in
order to make the simulation efficient and streamlined. A coarse
background Eulerian grid and our fine ALE mesh are two way
coupled using a partitioned approach which is fast, efficient, and

straightforward to implement.We use our volume conserving VOF
method only on the KDSMnear the creaturewhile using a standard
PLS method on the background Eulerian grid. We robustly imple-
ment interesting effects such as adhesion and anisotropic porosity.
We demonstrated how the coarse background Eulerian grid cap-
tures the bulk behavior of the water, while our VOF method cap-
tures detailed water effects near the creature and the particles cap-
ture the spray—all of which make important contributions to the
final result.

Figure 13: A close-up of the bear example, showing wa-
ter sticking to fur and splashes generated from our VOF
method.
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